Handling Qualities Flight Test Assessment of a Business Jet N zU P-β Fly-By-Wire Control System

Author(s):  
Tom Berger ◽  
Mark Tischler ◽  
Steven G. Hagerott ◽  
M Christopher Cotting ◽  
James Gresham ◽  
...  
2021 ◽  
pp. 1-19
Author(s):  
Tom Berger ◽  
Mark B. Tischler ◽  
Steven G. Hagerott ◽  
M. Christopher Cotting ◽  
James L. Gresham ◽  
...  

2014 ◽  
Vol 59 (4) ◽  
pp. 1-15 ◽  
Author(s):  
Christina M. Ivler ◽  
J. David Powell ◽  
Mark B. Tischler ◽  
Jay W. Fletcher ◽  
Carl Ott

The ability of a helicopter to carry externally slung loads makes it very versatile for many civil and military operations. However, the piloted handling qualities of the helicopter are degraded by the presence of the slung load. A control system is developed that uses measurements of the slung load motions as well as conventional fuselage feedback to improve the handling qualities for hover/low-speed operations. Prior research has shown a fundamental trade-off between load damping and piloted handling qualities for a feedback control system with cable angle/rate feedback. A new task-tailored approach proposed and implemented herein uses a method of switching between a load damping mode and a piloted handling qualities mode. These modes provide appropriate load feedback depending on the piloting task and flight regime. This provides improved handling qualities for maneuvering flight and for improved precision load control at hover. A new mission task element for precision load placement is developed (for possible inclusion into ADS-33E-PRF) to test the ability of the cable feedback system to improve load placement task performance. The improvements provided by this control system are demonstrated in a piloted flight test on the JUH-60A RASCAL fly-by-wire helicopter. The average load set-down time was reduced by a factor of two for the 1000-lb load on a 56-ft sling.


1997 ◽  
Author(s):  
J. Monaco ◽  
D. Ward ◽  
R. Barron ◽  
R. Bird ◽  
J. Monaco ◽  
...  

Author(s):  
Steve C. Southward ◽  
Douglas E. Ivers ◽  
Geoff C. Nicholson

Abstract Active Noise and Vibration Control (ANVC) technology is a proven solution for noise and vibration problems in aircraft. The challenges in commercializing this solution range from the development issues of choosing the best actuation, sensor, and control technology to obtaining sufficient flight test time and satisfying FAA requirements. This paper examines significant case histories in the progression of the Lord active vibration control program from conception to market. Throughout the development program, several important discoveries were made regarding the performance, reliability, and economics of Active Isolation Systems (AIS) in jet aircraft. First, practical speaker-based solutions cannot achieve global acoustic noise cancellation for engine tones above about 200 Hz. A comparatively small array of structural actuators placed in the dominant transmission path, such as in or near the engine mounts, are capable of global cancellation in the cabin up to at least 500 Hz. Second, the performance is generally better when cabin microphones are used as error sensor inputs because the AIS control system can compensate for flanking paths better than if accelerometers are used as error sensors. Third, when the actuators are placed in the dominant transmission path and close to the vibration source, the control system will simultaneously achieve global acoustic noise reduction in the cabin and vibration reduction in the aircraft structure without affecting the engine casing vibration levels.


Sign in / Sign up

Export Citation Format

Share Document