Effect of Impingement Angle on Flame Stability in a Non-Premixed Methane/Oxygen Diffusion Flame Burner

Author(s):  
Makayla L. Ianuzzi ◽  
Joshua M. Hollingshead ◽  
Jeffrey D. Moore ◽  
Grant A. Risha
2005 ◽  
Vol 177 (11) ◽  
pp. 2069-2089 ◽  
Author(s):  
JEFFREY D. MOORE ◽  
GRANT A. RISHA ◽  
KENNETH K. KUO ◽  
MARK D. D'AGOSTINI

Author(s):  
Lucas Eckenrode ◽  
Makayla Ianuzzi ◽  
Morgan Litzinger ◽  
Lucas Nunamaker ◽  
Jordan Crist ◽  
...  

2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


2015 ◽  
Vol 787 ◽  
pp. 732-735
Author(s):  
A. Alaguraja ◽  
S. Balaji ◽  
Inti Sandeep ◽  
M. Karthikeyan ◽  
S. Soma Sundaram

Diffusion flame burners are mainly used in industries over premixed flame burners for safety considerations. But the combustion process in a diffusion flame is not complete and the flame is usually in bright yellow in colour in contrast to the premixed flame which gives a bluish flame. To improve the combustion process in a diffusion flame burner a novel approach, using chevrons has been carried out. The chevrons are found to reduce the aero-acoustic noise in the exhaust jets of aircraft engines by allowing better mixing of the exhaust gas with the ambient air. The similar concept is used here where the tips of the burners are cut in the form of chevrons. Experimental investigations are carried out on burners with three and four chevrons in addition to a standard burner using LPG as the fuel. The results indicate that with the introduction of chevrons the diffusion flame becomes more compact. The premixed region, in the diffusion flame, where the air and fuel is mixed well is found to increase by nearly 100 % with the usage of chevrons, indicating better mixing of fuel and air. The results also indicate that increasing the number of chevrons from three to four does not show much variation. Further experiments are to be carried out to determine the improved fuel consumption with the usage of chevrons.


Sign in / Sign up

Export Citation Format

Share Document