Correction: Three-Body Collision Based Recombination Rate Constants from Quasi Classical Trajectory Calculations

Author(s):  
Eric C. Geistfeld ◽  
Thomas E. Schwartzentruber
1964 ◽  
Vol 40 (4) ◽  
pp. 1166-1167 ◽  
Author(s):  
Benjamin J. Woznick ◽  
James C. Keck

1967 ◽  
Vol 45 (20) ◽  
pp. 2369-2374 ◽  
Author(s):  
George Burns

The temperature rise which accompanies every flash photolytic reaction interferes with, and often makes impractical, measurements of the reaction rate constants. This difficulty may be partly overcome if the whole reaction vessel is uniformly irradiated by both the photolytic and the analyzing flash lamps.A flash photolysis apparatus with these characteristics was used to study bromine atom recombination. A 10 to 15 fold gain in atomic concentration, which corresponds to a 100 to 225 fold increase in three-body recombination rate, compared with the work of previous authors, was achieved with this apparatus. The reaction rate constants were determined from the changes in absorption of Br2 at either 4 035 Å or at 4 980 Å. The recombination rate constant of bromine in an excess of helium at 90 ± 20 °C was found to be equal to (0.8 ± 0.3)109 l2 mole−2 s−1 (measured at 4 980 Å) and (0.5 ± 0.1)109 l2 mole−2 s−1 (measured at 4 035 Å). The results suggest that the technique herein described can yield meaningful data, even though the reaction was accompanied by a 105 °C temperature rise. There was little heat exchanged between the reacting gas and the walls of the reaction vessel. Consequently the reaction vessel behaved as an effective calorimeter throughout the reaction.


2014 ◽  
Vol 610-611 ◽  
pp. 335-340 ◽  
Author(s):  
A. Rivero-Santamaría ◽  
F. Dayou ◽  
J. Rubayo-Soneira ◽  
M. Monnerville

1997 ◽  
Vol 62 (2) ◽  
pp. 154-171 ◽  
Author(s):  
Jan Vojtík ◽  
Richard Kotal

An analysis of the degree of convergence of theoretical pictures of the dynamics of the autoionization event He(23S)-D2(v" = 0) -> [He...D2+(v')] + e is presented for a number of batches of Monte Carlo calculations differing in the number of the trajectories run. The treatment of the dynamics consists in 2D classical trajectory calculations based on static characteristics which include a quantum mechanical treatment of the perturbed D2(v" = 0) and D2+(v') vibrational motion. The vibrational populations are dynamical averages over the local widths of the He(23S)-D2(v" = 0) state with respect to autoionization to D2+(...He) in its v'th vibrational level and the Penning electron energies are related to the local differences between the energies of the corresponding perturbed D2(v" = 0)(...He*) and D2+(v')(...He) vibrational states. Special attention is paid to the connection between the requirements on the degree of convergence of the classical trajectory picture of the event and the purpose of the calculations. Information is obtained regarding a scale of the trajectory calculations required for physically sensible applications of the model to an interpretation of different type of experiments on the system: total ionization cross section measurements, Penning ionization electron spectra, subsequent 3D classical trajectory calculations of branching ratios of the products of the postionization collision process, and interpretation of electron ion coincidence measurements of the product branching ratios for individual vibrational levels of the nascent Penning ion.


Sign in / Sign up

Export Citation Format

Share Document