Attitude Estimation of a Micro UAV with Side-Force Fins Using a Convolutional Neural Network

2021 ◽  
Author(s):  
Ryota Kawahara ◽  
Kakuji Ogawara ◽  
Hidenori Shingin ◽  
Naruchika Hino ◽  
Takeyuki Yamamoto
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1282
Author(s):  
Minseok Ok ◽  
Sungsuk Ok ◽  
Jahng Hyon Park

The acceleration of a vehicle is important information in vehicle states. The vehicle acceleration is measured by an inertial measurement unit (IMU). However, gravity affects the IMU when there is a transition in vehicle attitude; thus, the IMU produces an incorrect signal output. Therefore, vehicle attitude information is essential for obtaining correct acceleration information. This paper proposes a convolutional neural network (CNN) for attitude estimation. Using sequential data of a vehicle’s chassis sensor signal, the roll and pitch angles of a vehicle can be estimated without using a high-cost sensor such as a global positioning system or a six-dimensional IMU. This paper also proposes a dual-extended Kalman filter (DEKF), which can accurately estimate acceleration/angular velocity based on the estimated roll/pitch information. The proposed method is validated by real-car experiment data and CarSim, a vehicle simulator. It accurately estimates the attitude estimation with limited sensors, and the exact acceleration/angular velocity is estimated considering the roll and pitch angle with de-noising effect. In addition, the DEKF can improve the modeling accuracy and can estimate the roll and pitch rates.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document