side force
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 1)

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Matthew Aultman ◽  
Rodrigo Auza-Gutierrez ◽  
Kevin Disotell ◽  
Lian Duan

Lattice Boltzmann method (LBM) simulations were performed to capture the long-period dynamics within the wake of a realistic DrivAer fastback model with stationary and rotating wheels. The simulations showed that the wake developed as a low-pressure torus regardless of whether the wheels were rotating. This torus shrank in size on the base in the case of rotating wheels, leading to a reduction in the low-pressure footprint on the base, and consequently a 7% decrease in the total vehicle drag in comparison to the stationary wheels case. Furthermore, the lateral vortex shedding experienced a long-period switching associated with the bi-stability in both the stationary and rotating wheels cases. This bi-stability contributed to low-frequency side force oscillations (<1 Hz) in alignment with the peak motion-sickness-inducing frequency (0.2 Hz).


SPE Journal ◽  
2021 ◽  
pp. 1-23
Author(s):  
Pengju Chen ◽  
Stefan Miska ◽  
Mengjiao Yu ◽  
Evren Ozbayoglu

Summary In this paper, we integrated our polycrystalline diamond compact (PDC) cutter model (Chen et al. 2021) into a PDC bit model that can predict the weight on bit (WOB), torque on bit (TOB), and imbalanced side force on a bit under given drilling conditions. We first proposed a method to determine the actual cutting plane and depth of cut of each cutter on a PDC bit. Once the two parameters for each cutter are determined, the cutter model can then be applied to calculate the cutting force of each cutter. The final bit force and moment (i.e., WOB, TOB, and imbalanced side force) are calculated as the resultant force and moment of cutting forces of all cutters. The PDC bit model in this paper considers all bit design parameters, including bit matrix geometry, blade profile, cutter layout, and the inclination of each cutter. Furthermore, the bit model also considers some bottomhole assembly (BHA) parameters (e.g., bit tilt angle, location of first fulcrum point, and tool face/steering plane angle), which allows the bit model to simulate a bit under different drilling modes. The bit model is also validated by published test data and field applications. Finally, case studies are conducted, and the influence of bottomhole stresses, BHA parameters, and drilling modes on bit force and moment are discussed. A field application of the bit model is also provided. The bit model can be directly used for PDC bit design and simulation. In fact, this paper presents a general way to integrate a cutter model into a PDC bit model. Readers are also encouraged to apply this method to integrate their own cutter model into a PDC bit model.


2021 ◽  
Author(s):  
Mengying Wang ◽  
Zhenxu Sun ◽  
Shengjun Ju ◽  
Guowei Yang

Abstract Conventional studies usually assume that the train surface is smooth, so as to simplify the numerical calculation. In fact, the surface of the train is irregular, which will change the flow characteristics in the boundary layer and further affect the aerodynamic performance of a train. In this work, roughness is applied to the roof of a 1:25 scaled train model in the form of longitudinal strips. Firstly, the improved delayed detached eddy simulation (IDDES) method is adopted to simulate the aerodynamic performance of the train model with both smooth and rough surface, which are subjected to crosswind. Results show that the side force coefficient and the roll moment coefficient subjected to rough model decreased by 3.71% and 10.56% compared with the smooth model. Then, the width, height and length of the strips are selected as variables to design different numerical simulation schemes based on the orthogonal experimental design method. Through variance analysis, it can be found that four design parameters have no significant effect on the side force coefficient. Meanwhile, for the roll moment coefficient, the length of the strips in the straight region of the train has a significant effect and the width of the strips has a highly significant effect on it. These conclusions can provide a theoretical basis to improve the aerodynamic performance of the high-speed train subjected to crosswind.


2021 ◽  
Vol 38 (8) ◽  
pp. 575-580
Author(s):  
Ki-yeon Jeong ◽  
Sun-young Lee ◽  
Hyun-seob Lee ◽  
Hee-sung Yang ◽  
Min-ho Kim ◽  
...  

Author(s):  
Y. Nakajima ◽  
S. Hidano

ABSTRACT The new theoretical tire model for force and moment has been developed by considering a two-dimensional contact patch of a tire with rib pattern. The force and moment are compared with the calculation by finite element method (FEM). The side force predicted by the theoretical tire model is somewhat undervalued as compared with the FEM calculation, while the self-aligning torque predicted by the theoretical tire model agrees well with the FEM calculation. The shear force distribution in a two-dimensional contact patch under slip angle predicted by the proposed model qualitatively agrees with the FEM calculation. Furthermore, the distribution of the adhesion region and sliding region in a two-dimensional contact patch predicted by the theoretical tire model qualitatively agrees with the FEM calculation.


AIAA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Gabriel Liaño ◽  
José Jiménez-Varona

2021 ◽  
Vol 39 (2A) ◽  
pp. 167-179
Author(s):  
Mohammed A. Al-Neami ◽  
Husam H. Baqir ◽  
Saif H. Hameed

 This paper displays an empirical work of a micropile inserted in the dry river sand with different length to diameter (L/D) ratios (13, 15, 27, 42, and 50). The experimental work is executed on the models of micropile to imitate the side force motion, acting on the micropile head to explain the micropile conduct due to the different side force rates. Forty-five models are tested (eighteen models for short pile, eighteen model for long pile and nine models for intermediate) embedded in different relative densities of sandy soil.  The results illustrate that for the same relative density, the lateral load is decreased when the moving rate increasing from (3.37 to 3.97 then 4.59 mm/min), that means frequency (0.55 to 0.65 then 0.75 Hz), respectively. At the same moving rate of horizontal loading, the value of lateral load increased with the increase of horizontal displacement until reach to the 12mm at the end of the test. The duration of the test decreased with the increase of moving rate and the maximum duration of the test recorded for micropile model has (L/D) of 50 with 75% relative density when the moving rate of lateral load is 3.37 mm/min. Also, it is found that the duration of the test increases when the relative density increased at the same moving rate.


2021 ◽  
Vol 11 (2) ◽  
pp. 784
Author(s):  
Zhenxu Sun ◽  
Shuanbao Yao ◽  
Lianyi Wei ◽  
Yongfang Yao ◽  
Guowei Yang

The structural design of the streamlined shape is the basis for high-speed train aerodynamic design. With use of the delayed detached-eddy simulation (DDES) method, the influence of four different structural types of the streamlined shape on aerodynamic performance and flow mechanism was investigated. These four designs were chosen elaborately, including a double-arch ellipsoid shape, a single-arch ellipsoid shape, a spindle shape with a front cowcatcher and a double-arch wide-flat shape. Two different running scenes, trains running in the open air or in crosswind conditions, were considered. Results reveal that when dealing with drag reduction of the whole train running in the open air, it needs to take into account how air resistance is distributed on both noses and then deal with them both rather than adjust only the head or the tail. An asymmetrical design is feasible with the head being a single-arch ellipsoid and the tail being a spindle with a front cowcatcher to achieve the minimum drag reduction. The single-arch ellipsoid design on both noses could aid in moderating the transverse amplitude of the side force on the tail resulting from the asymmetrical vortex structures in the flow field behind the tail. When crosswind is considered, the pressure distribution on the train surface becomes more disturbed, resulting in the increase of the side force and lift. The current study reveals that the double-arch wide-flat streamlined design helps to alleviate the side force and lift on both noses. The magnitude of side force on the head is 10 times as large as that on the tail while the lift on the head is slightly above that on the tail. Change of positions where flow separation takes place on the streamlined part is the main cause that leads to the opposite behaviors of pressure distribution on the head and on the tail. Under the influence of the ambient wind, flow separation occurs about distinct positions on the train surface and intricate vortices are generated at the leeward side, which add to the aerodynamic loads on the train in crosswind conditions. These results could help gain insight on choosing a most suitable streamlined shape under specific running conditions and acquiring a universal optimum nose shape as well.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 401
Author(s):  
Le Zhang ◽  
Tian Li ◽  
Jiye Zhang

Using aerodynamic resistance to provide braking force for trains is an economical braking method. It has few components to wear out and requires no energy. But the aerodynamic braking plate will significantly affect train’s aerodynamics behaviors. This paper studies the effect of the braking plates’ layout on the aerodynamic force of head car when a train is running under a crosswind. The results show that the braking plate will not only increase the drag force, but also significantly affect the lift and lateral force of the train’s head car. The installation position of the braking plates will also have a great effect on the aerodynamic force. In order to increase the drag force and weaken other aerodynamic force changes of the head car, we suggest that the first braking plate be arranged at the end of a streamlined shape, and the second braking plate be arranged at the middle of the car body. Compared with trains without braking plates, the head car’s drag force increases by 85.7%, lift force only increases by 7.6%, and side force decreases by 5.9%, when the braking plates are in operation.


2021 ◽  
Author(s):  
Ryota Kawahara ◽  
Kakuji Ogawara ◽  
Hidenori Shingin ◽  
Naruchika Hino ◽  
Takeyuki Yamamoto

Sign in / Sign up

Export Citation Format

Share Document