Active control of evaporator exit vapor quality in a pumped two-phase loop

Author(s):  
Rohan Kokate ◽  
Chanwoo Park ◽  
Constandinos Mitsingas ◽  
Chol-Bum Kwon
Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


Author(s):  
Raphael Mandel ◽  
Serguei Dessiatoun ◽  
Patrick McCluskey ◽  
Michael Ohadi

This work presents the experimental design and testing of a two-phase, embedded manifold-microchannel cooler for cooling of high flux electronics. The ultimate goal of this work is to achieve 0.025 cm2-K/W thermal resistance at 1 kW/cm2 heat flux and evaporator exit vapor qualities at or exceeding 90% at less than 10% absolute pressure drop. While the ultimate goal is to obtain a working two-phase embedded cooler, the system was first tested in single-phase mode to validate system performance via comparison of experimentally measured heat transfer coefficient and pressure drop to the values predicted by CFD simulations. Upon validation, the system was tested in two phase mode using R245fa at 30°C saturation temperature and achieved in excess of 1 kW/cm2 heat flux at 45% vapor quality. Future work will focus on increasing the exit vapor quality as well as use of SiC for the heat transfer surface upon completion of current experiments with Si.


1999 ◽  
Vol 13 (7) ◽  
pp. 584-584
Author(s):  
Won Tae Kim ◽  
Kwang Soo Kim ◽  
Young Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document