Embedded Two-Phase Cooling of High Flux Electronics via Micro-Enabled Surfaces and Fluid Delivery Systems (FEEDS)

Author(s):  
Raphael Mandel ◽  
Serguei Dessiatoun ◽  
Patrick McCluskey ◽  
Michael Ohadi

This work presents the experimental design and testing of a two-phase, embedded manifold-microchannel cooler for cooling of high flux electronics. The ultimate goal of this work is to achieve 0.025 cm2-K/W thermal resistance at 1 kW/cm2 heat flux and evaporator exit vapor qualities at or exceeding 90% at less than 10% absolute pressure drop. While the ultimate goal is to obtain a working two-phase embedded cooler, the system was first tested in single-phase mode to validate system performance via comparison of experimentally measured heat transfer coefficient and pressure drop to the values predicted by CFD simulations. Upon validation, the system was tested in two phase mode using R245fa at 30°C saturation temperature and achieved in excess of 1 kW/cm2 heat flux at 45% vapor quality. Future work will focus on increasing the exit vapor quality as well as use of SiC for the heat transfer surface upon completion of current experiments with Si.

2017 ◽  
Vol 25 (03) ◽  
pp. 1750027 ◽  
Author(s):  
M. Mostaqur Rahman ◽  
Keishi Kariya ◽  
Akio Miyara

Experiments on condensation heat transfer and adiabatic pressure drop characteristics of R134a were performed inside smooth and microfin horizontal tubes. The tests were conducted in the mass flux range of 50[Formula: see text]kg/m2s to 200[Formula: see text]kg/m2s, vapor quality range of 0 to 1 and saturation temperature range of 20[Formula: see text]C to 35[Formula: see text]C. The effects of mass velocity, vapor quality, saturation temperature, and microfin on the condensation heat transfer and frictional pressure drop were analyzed. It was discovered that the local heat transfer coefficients and frictional pressure drop increases with increasing mass flux and vapor quality and decreasing with increasing saturation temperature. Higher heat transfer coefficient and frictional pressure drop in microfin tube were observed. The present experimental data were compared with the existing well-known condensation heat transfer and frictional pressure drop models available in the open literature. The condensation heat transfer coefficient and frictional pressure drop of R134a in horizontal microfin tube was predicted within an acceptable range by the existing correlation.


Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Luca Doretti ◽  
Simone Mancin ◽  
Luisa Rossetto ◽  
...  

Microfins tubes are largely used in refrigeration industry for in-tube refrigerant condensation, because of the heat transfer enhancement when compared to equivalent smooth tubes under the same operating conditions. But not much evidence about the effect of microfins on the condensation flow patterns is available in the open literature. There is agreement in the open literature that the mechanisms of heat transfer are intimately linked with the prevailing two-phase flow regime. The present authors have recently measured the heat transfer coefficient during condensation of R410A in a microfin tube. The heat transfer enhancement in this tube can be experimentally evaluated by comparing those coefficients to the ones measured by Cavallini et al. (2001) in a plain tube, at the same operating conditions. The same operative conditions (saturation temperature, vapor quality and mass flux), occurring during the heat transfer measurements, were reproduced in a different section for visualization of flow patterns during condensation of R410A. The flow visualization has been carried out both in the plain tube and in the microfin tube. The objective of the present paper is to present the heat transfer enhancement during condensation of R410A and to show the flow visualized at the same operating condition for both the smooth and the microfin tube, aiming to link the heat transfer enhancement to the flow pattern variation.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5972
Author(s):  
Yu Xu ◽  
Zihao Yan ◽  
Ling Li

To protect the environment, a new low-GWP refrigerant R1234ze(E) was created to substitute R134a. However, its flow boiling performances have not received sufficient attention so far, which hinders its popularization to some extent. In view of this, an experimental investigation was carried out in a 1.88 mm horizontal circular minichannel. The saturation pressures were maintained at 0.6 and 0.7 MPa, accompanied by mass flux within 540–870 kg/m2 s and heat flux within 25–65 kW/m2. For nucleate boiling, a larger heat flux brings about a larger heat transfer coefficient (HTC), while for convective boiling, the mass flux and vapor quality appear to take the lead role. The threshold vapor quality of different heat transfer mechanisms is around 0.4. Additionally, larger saturation pressure results in large HTC. As for the frictional pressure drop (FPD), it is positively influenced by mass flux and vapor quality, while negatively affected by saturation pressure, and the influence of heat flux is negligible. Furthermore, with the measured data, several existing correlations are compared. The results indicate that the correlations of Saitoh et al. (2007) and Müller-Steinhagen and Heck (1986) perform best on flow boiling HTC and FPD with mean absolute deviations of 5.4% and 10.9%.


1999 ◽  
Vol 122 (2) ◽  
pp. 387-391 ◽  
Author(s):  
S.-S. Hsieh ◽  
K.-J. Jang ◽  
Y.-C. Tsai

Results of a study on saturated boiling heat transfer of refrigerant R-600a in horizontal tubes (ID=10.6 mm) with strip-type inserts (longitudinal strip LS with/without perforated holes and cross-strip CS inserts) are reported. Local heat transfer coefficients are measured for a range of heat flux (9.1∼31.2 kW/m2), mass velocity (8.23∼603.3 kg/m2s), and equilibrium mass quality (⩽0.8) and the influences were studied. The data were compared with the performance of the corresponding smooth tubes. Enhancement factors are presented and discussed. Pressure drop measurement was also conducted and it is found that both single-phase and two-phase pressure drops increase with increasing heat flux levels and mass velocities. [S0022-1481(00)00302-9]


2020 ◽  
Vol 44 (3) ◽  
pp. 362-384
Author(s):  
Amen Younes ◽  
Ibrahim Hassan ◽  
Lyes Kadem

A semi-analytical model for predicting heat transfer and pressure drop in annular flow regime for saturated flow boiling in a horizontal microtube at a uniform heat flux has been developed based on a one-dimensional separated flow model. More than 600 two-phase heat transfer, 498 two-phase pressure drop, and 153 void fraction experimental data points for annular flow regime were collected from the literature to validate the present model. The collected data were recorded for various working fluids, R134a, R1234ze, R236fa, R410a, R113, and CO2, for round macro- and microsingle horizontal tubes with an inner diameter range of 0.244 mm ≤ Dh ≤ 3.1 mm, a heated length to diameter ratio of 90 ≤ Lh/Dh ≤ 2000, a saturation temperature range of –10 ≤ Tsat ≤ +50 °C, and liquid to vapor density ratios in the range 6.4 ≤ ρf/ρg ≤ 188. The model was tested for laminar and turbulent flow boiling conditions corresponding to an equivalent Reynolds number, 1900 ≤ Reeq ≤ 48 000, and confinement number, 0.27 ≤ Cconf ≤ 3.4. Under the annular flow regime, the present model predicted the collected data of the heat transfer, pressure drop, and void fraction with mean absolute errors (MAE) of 18.14%, 23.02%, and 3.22%, respectively.


2017 ◽  
Vol 25 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Pham-Quang Vu ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh ◽  
Honggi Cho

The condensation heat transfer coefficients and pressure drops of R410A and R22 flowing inside a horizontal aluminum multiport mini-channel tube having 18 channels are investigated. Experimental data are presented for the range of vapor quality from 0.1 to 0.9, mass flux from 50 to 500[Formula: see text]kg/m2s, heat flux from 3 to 15[Formula: see text]kW/m2 and the saturation temperature at 48[Formula: see text]C. The pressure drop across the test section was directly measured by a differential pressure transducer. At a small scale, the noncircular cross-sections can enhance the effect of the surface tension. The average heat transfer coefficient increased with the increase of vapor quality, mass flux and heat flux. Under the same test conditions, the heat transfer coefficients of R22 are higher than those for R410A, the pressure drops for R410A are 7–19% lower than those of R22. The lower pressure drop of R410A has an important advantage as an alternative working fluid for R22 in air-conditioning and heat pump systems.


Author(s):  
Liqiang Pan ◽  
Yang Liu ◽  
Weihua Li ◽  
Yefei Liu

The two-phase flow instability of forced convection has been experimentally investigated in a vertical narrow channel with the hydraulic diameter of 2.857mm and aspect ratio of 20. Transparent, metallic and conductive films on external surfaces of the test section can provide visualization and uniform heating for deionized water. The heat flux is 6–18.2 kW · m−2. When the instability occurs at low vapor quality, a series of parameters are measured and visualized images are obtained by a high-speed camera. The results show that the large amplitude of pressure drop between the inlet and outlet in the test section is due to the elongated bubble, and the value of pressure drop is positively correlated with the volume of the bubble. The oscillation period of pressure drop decreases with the increase of heat flux, and the period can be determined by the method of the Fast Fourier Transform. The backflow phenomenon is analyzed, which has a greater effect on the oscillation of pressure drop than bubble nucleation, bubble growth, bubble coalescence and recoiling of bubble boundary.


2016 ◽  
Vol 819 ◽  
pp. 371-375
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
T.A. Simanjuntak ◽  
Nasruddin ◽  
Muhammad Idrus Alhamid

This study experimentally investigated two-phase flow pressure drop of propane as refrigerant in horizontal small tube. Inner diameter and length of the tube were 7.6 mm and 1.07 m, respectively. In order to get pressure drop data, the experiment was conducted in various conditions of 10 to 25 kW m-2 heat flux, 200 to 628 kg m-2 s-1 mass flux, and 4.0 to 11.7°C saturation temperature. This study clearly showed the effect of heat flux, mass flux, and saturation temperature on the pressure drop of propane. This study also investigated which fluid properties gave higher effect on the frictional pressure drop due to its change over the process based on the recent experiment data. The existing pressure drop correlations were evaluated against the experimental result.


Author(s):  
Xiao Hu ◽  
Guiping Lin ◽  
Hongxing Zhang

A closed-loop two-phase microchannels cooling system using a micro-gear pump was built in this paper. The microchannels heat sink was made of oxygen-free copper, and 14 parallel microchannels with the dimension of 0.8mm(W)×1.5mm(D)×20mm(L) were formed by electric spark drilling followed by linear cutting which separated the channels from each other. The heat transfer performance was evaluated by the fluid temperature, the pressure drop across the micro-channels and the volumetric flow rate. Experiments were performed with refrigerant FC-72 which spanned the following conditions: initial pressure of Pin = 73 kPa, mass velocity of G = 94 – 333 kg/m2s, outlet quality of xe,out = 0 – superheat and heat flux of q″= 25–140 W/cm2. The result showed that, the maximum heat flux achieved 96 W/cm2, as the heating surface temperature was kept below 85 °C and critical heat flux occurred in the condition of low flow rate. Average two-phase heat transfer coefficients increased with the heat flux at low mass flux (G = 94 and 180 kg/m2s) and all heat fluxes, high mass flux (G = 333 kg/m2s) and all heat fluxes, and moderate mass fluxes (G = 224kg/m2s) under low and moderate heat fluxes (q″<110 W/cm2 for G = 224 kg/m2s), which was a feature of nucleate boiling mechanism. Pressure drop through microchannels heat sink was found to be below 4kPa.


Sign in / Sign up

Export Citation Format

Share Document