Nuclear Electric Propulsion / Chemical Propulsion Hybrid Human Mars Exploration Campaign: From Start to Steady-State

2021 ◽  
Author(s):  
Timothy S. Kokan ◽  
James F. Horton ◽  
Claude R. Joyner ◽  
Daniel J. Levack ◽  
Dennis E. Morris ◽  
...  
Author(s):  
Timothy S. Kokan ◽  
James F. Horton ◽  
Claude R. Joyner ◽  
Daniel J. Levack ◽  
Dennis E. Morris ◽  
...  

Author(s):  
Patrick Chai ◽  
Dale C. Arney ◽  
Christopher A. Jones ◽  
Jordan Klovstad ◽  
Kevin Larman

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Samarth Patel ◽  
M.S.R. Bondugula ◽  
Srilochan Gorakula

It was realized earlier that chemical propulsion systems utilize fuel very inefficiently, which greatly limits their lifespan. Electric propulsion is into existence to overcome this limitation of chemical propulsion. The magnetoplasmadynamic (MPD) thruster is presently the most powerful form of electromagnetic propulsion. It is the thruster’s ability to efficiently convert MW of electric power into thrust which gives this technology a potential to perform several orbital as well as deep space missions. MPD thruster offers distinct advantages over conventional types of propulsion for several mission applications with its high specific impulse and exhaust velocities. However, MPD thruster has limitations which limits its operational efficiency and lifetime. In this paper, the thruster limitations are reviewed with respect to three operational limits i.e., the onset phenomenon, cathode lifetime, and thruster overfed limits. The dependence and effects of the operational limits on each other is compared using different empirical models to derive a scaling factor that has been found for each geometrical arrangement; a limiting value exists beyond which the operation becomes highly unsteady and electrode erosion occurs. Along with reviewing and proposing methods to overcome power limitations for MPD thrusters, the relation between exit velocity and ratio of electrode’s radius is also verified using Maecker’s formula.


Author(s):  
Sukhmander Singh

The chapter discussed the technological application of plasma physics in space science. The plasma technology is using laser-plasma fusion, inertial fusion, Terahertz wave generation and welding of metals. In this chapter, the application of plasma physics in the field of electric propulsion and types has been discussed. These devices have much higher exhaust velocities, longer life time, high thrust density than chemical propulsion devices and useful for space missions with regard to the spacecraft station keeping, rephrasing and orbit topping applications. The mathematical relation has been derived to obtain the performance parameters of the propulsion devices.


Author(s):  
Carsten Arthur Scharlemann ◽  
Martin Tajmar

The increasing application of micro-satellites (from 10 kg up to 100 kg) for a rising number of various missions demands the development of new miniaturized propulsion systems. Micro-satellites have special requirements for the propulsion system such as small mass, reduced volume, and very stringent electrical power constraints. Existing propulsion systems often can not satisfy these requirements. The Space Propulsion Department of the ARC Seibersdorf research dedicated itself to the development and test of various micropropulsion systems for present and future space missions. The portfolio of the systems under development includes electrical and chemical propulsion systems. The covered thrust and specific impulse of the developed propulsion systems ranges from 1μN to 1N and 500 s to 8000 s respectively. Based on the large experience obtained over several decades in the development of Field Emission Electric Propulsion systems (FEEP), several microstructured FEEPs have been developed. The design of these systems is presented as well as preliminary test results and a summarization of the experience obtained during the process of miniaturizing such systems. The development of miniaturized chemical propulsion systems includes a bipropellant and a monopropellant thruster. The bipropellant thruster constitutes the smallest existing 1N thruster utilizing hydrogen peroxide. The thruster system consists of two micopumps for the propellant feed and a microturbine to generate the power for operating the pumps. The monopropellant thruster is a derivative of the bipropellant thruster. It offers a lower specific impulse than the bipropellant system but due to its reduced system complexity it represents also a promising candidate for several future space missions. Both systems utilize rocket grade hydrogen peroxide (green propellant), which is decomposed with the help of an advanced monolithic catalyst. The present paper discusses the design methods and the physical limitations of such chemical propulsion systems with regard to their miniaturization and summarizes their performance evaluation.


Author(s):  
V. Tudor ◽  
M. Cerza

The future capabilities of naval ships will be directly related to the electronic components used in advanced radar systems, fire control systems, electric propulsion and even electric weapons. The next generation of naval warships will fall under the concept of an all electric ship, where turbines convert all the power produced by the engine into electricity. This electrical power can then be distributed given the ship’s mission and operating profile. The current need for advanced electronics cooling techniques is paramount since power dissipation levels are rapidly exceeding the capabilities of forced air convection cooling. This paper reports an experimental investigation of the start-up and transient response to heat load change of a capillary assisted thermosyphon (CAT) for the shipboard cooling of electronics components. The capillary assisted thermosyphon differs from a capillary pumped loop or loop heat pipe system in that the basic cooling-loop is based on a thermosyphon. The capillary assist comes from the fact that there is a wicking structure in the flat evaporator plate. The wicking structure allows uniformly spread of the working fluid across the flat plate evaporator in the areas under the heat sources as well as providing additional capillary pumping assist to the loop. A vertical flat plate, CAT evaporator was designed and tested under a fixed thermal sink temperature of 21°C. The condenser cold plate cooling water flow rate was fixed as 3.785 liters per minute (i.e. 1 gpm). The heat input varied from 250 to 1000W — evenly spread over the area of the evaporator. The CAT flat plate evaporator performed very well under this range of heat inputs, sink temperature, and cold plate flow rate. The main result obtained showed that the CAT loop reached steady state operation within 10 min. to 15 min. The average plate temperature did not exceed 70°C for the maximum heat input of 1000W. The CAT evaporator operating temperature increased with increasing heat input for all conditions tested and reached 60°C at 1000W. The continuous and stable operation of the CAT loop during start-up, steady-state and during transient/sudden heat input variations indicates that the CAT loop is a viable solution for high flux electronics components cooling.


Sign in / Sign up

Export Citation Format

Share Document