electromagnetic propulsion
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Yuxin Yang ◽  
Peng Liu ◽  
Qiang Yin ◽  
Keren Dai ◽  
Haojie Li ◽  
...  


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Samarth Patel ◽  
M.S.R. Bondugula ◽  
Srilochan Gorakula

It was realized earlier that chemical propulsion systems utilize fuel very inefficiently, which greatly limits their lifespan. Electric propulsion is into existence to overcome this limitation of chemical propulsion. The magnetoplasmadynamic (MPD) thruster is presently the most powerful form of electromagnetic propulsion. It is the thruster’s ability to efficiently convert MW of electric power into thrust which gives this technology a potential to perform several orbital as well as deep space missions. MPD thruster offers distinct advantages over conventional types of propulsion for several mission applications with its high specific impulse and exhaust velocities. However, MPD thruster has limitations which limits its operational efficiency and lifetime. In this paper, the thruster limitations are reviewed with respect to three operational limits i.e., the onset phenomenon, cathode lifetime, and thruster overfed limits. The dependence and effects of the operational limits on each other is compared using different empirical models to derive a scaling factor that has been found for each geometrical arrangement; a limiting value exists beyond which the operation becomes highly unsteady and electrode erosion occurs. Along with reviewing and proposing methods to overcome power limitations for MPD thrusters, the relation between exit velocity and ratio of electrode’s radius is also verified using Maecker’s formula.



2020 ◽  
Vol 10 (11) ◽  
pp. 3736
Author(s):  
Ashish Kumar ◽  
Sugjoon Yoon ◽  
V.R.Sanal Kumar

One of the major limitations of existing unmanned aerial vehicles is limited flight endurance. In this study, we designed an innovative uninterrupted electromagnetic propulsion device for high-endurance missions of a quadcopter drone for the lucrative exploration of earth and other planets with atmospheres. As an airborne platform, this device could achieve scientific objectives better than state-of-the-art revolving spacecraft and walking robots, without any terrain limitation. We developed a mixed reality simulation based on a quadcopter drone and an X-Plane flight simulator. A computer with the X-Plane flight simulator represented the virtual part, and a real quadcopter operating within an airfield represented the real part. In the first phase of our study, we developed a connection interface between the X-Plane flight simulator and the quadcopter ground control station in MATLAB. The experimental results generated from the Earth’s atmosphere show that the flight data from the real and the virtual quadcopters are precise and very close to the prescribed target. The proof-of-concept of the mixed reality simulation of the quadcopter at the Earth atmosphere was verified and validated through several experimental flights of the F450 spider quadcopter with a Pixhawk flight controller with the restricted endurance at the airfield location of Hangang Drone Park in Seoul, South Korea. We concluded that the new generation drones integrated with lightweight electromagnetic propulsion devices are a viable option for achieving unrestricted flight endurance with improved payload capability for Earth and other planetary explorations with the aid of mixed reality simulation to meet the mission flight path demands. This study provides insight into mixed reality simulation aiming for Mars explorations and high-endurance missions in the Earth’s atmosphere with credibility using quadcopter drones regulated by dual-head electromagnetic propulsion devices.



Author(s):  
Remi Cornwall

Theoretical analysis into the energetics of a novel putative electromagnetic field propulsion device by the author, found that it was able to impart momenergy to the ground state of the electromagnetic field; some rest-energy of the craft was converted to kinetic energy of the craft. Electrical analysis showed that the propulsor was always a net electrical load – if the device accelerated from one frame, then deaccelerated to the original frame, both processes would consume electrical work. The aim of this paper is to look further into this sinking of high-grade electrical energy into the field ground state and to show that an even more pernicious form of 2nd Law of Thermodynamics exists.





Author(s):  
Remi Cornwall

This paper updates earlier thoughts by the author on a putative electromagnetic propulsion system, to perform a more detailed energy balance. The previous paper demonstrated how momentum could be dumped to the ground state of the electromagnetic field but a claim was left somewhat hanging at the end of the previous paper, that the work done in changing the craft's velocity would effectively shift the centre of mass of the field-although that would be an infinitesimal shift in practice. The craft must always supply work to change velocity, such as by an accelerate/de-accelerate cycle and superficially this looks to violate the conservation of energy; we prove that this isn't so.



Initiatives in electromagnetic propulsion all over the world are aimed at the development of electromagnetic launchers. This paper presents the constraint based design of Multipole Field Electromagnetic Launcher (MFEL). A design algorithm is developed based on Gauss iterative method. Muzzle velocity is considered as the objective function and the length, diameter and thickness of the accelerating coil are considered as constraints. The results for hexapole, octapole, decapole, dodecapole and hexadecapole cases are compared and tabulated.



IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 164856-164866 ◽  
Author(s):  
Keren Dai ◽  
Yuxin Yang ◽  
Qiang Yin ◽  
He Zhang


2018 ◽  
Vol 1087 ◽  
pp. 042048
Author(s):  
Wang Pei ◽  
Hua Yu Gao ◽  
Fu Hui ◽  
Zhang Ke ◽  
Mei Bo Lv ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document