PSE-Coupled LES Method for Turbulent Transition in Compressible Boundary Layer

2022 ◽  
Author(s):  
Jiseop Lim ◽  
Minwoo Kim ◽  
Seungtae Kim ◽  
Sol Keun Jee ◽  
Donghun Park
2021 ◽  
Vol 108 ◽  
pp. 106367
Author(s):  
Jiseop Lim ◽  
Minwoo Kim ◽  
Seungtae Kim ◽  
Solkeun Jee ◽  
Donghun Park

2019 ◽  
Vol 50 (5) ◽  
pp. 461-481
Author(s):  
Sergei Vasilyevich Aleksandrov ◽  
Evgeniya Andreevna Aleksandrova ◽  
Volf Ya. Borovoy ◽  
Andrey Vyacheslavovich Gubernatenko ◽  
Vladimir Evguenyevich Mosharov ◽  
...  

Author(s):  
K. Bammert ◽  
R. Milsch

Blades of axial flow compressors are often roughened by corrosion or erosion. There is only scant information about the influence of this roughening on the boundary layers of the blades and thereby on the compressor efficiency. To obtain detailed information for calculating the efficiency drop due to the roughness, experimental investigations with an enlarged cascade have been executed. The results enabled to develop new formulas for a modified friction coefficient in the laminar region and for the laminar-turbulent transition and the separation points of the boundary layer. Thus, together with the Truckenbrodt theory, it was possible, to get a good reproduction of the experimental results.


1967 ◽  
Vol 89 (4) ◽  
pp. 281-288 ◽  
Author(s):  
V. D. Blankenship ◽  
P. M. Chung

The coupling between the inviscid flow and the compressible boundary layer in the developing entrance region for internal flows is analyzed by solving the particular inviscid flow-boundary layer interaction problem. The interaction problem is solved by postulating certain series forms of solutions for the inviscid region and the boundary layer. The boundary-layer equations and inviscid-flow equations are perturbed to third order and each generated equation is solved numerically. In order to preserve the universality of each of the perturbed boundary-layer equations, the perturbation parameter is described by an integral equation which is also solved in series form. The final results describing the interaction problem are then constructed for any given conditions by forming the three series to a consistent order of magnitude. This technique of coordinate perturbation is generalized to show how it may be applied to the entrance regions of pipe flows, including mass injection or suction, and also to the laminar boundary layers in shock tube flows. It demonstrates analytically the manner in which the boundary layer and inviscid flow interact and create a streamwise pressure gradient. In particular, the interaction problem which occurs in shock tube flows is solved in detail by the use of this generalized method, as an example.


Sign in / Sign up

Export Citation Format

Share Document