Numerical analysis of laminar to turbulent transition boundary layer flow

Author(s):  
Channabasav ◽  
C.D. Hampali
2015 ◽  
Vol 786 ◽  
pp. 5-28 ◽  
Author(s):  
Shintaro Imayama ◽  
P. Henrik Alfredsson ◽  
R. J. Lingwood

Rotating-disk boundary-layer flow is known to be locally absolutely unstable at $R>507$ as shown by Lingwood (J. Fluid Mech., vol. 299, 1995, pp. 17–33) and, for the clean-disk condition, experimental observations show that the onset of transition is highly reproducible at that Reynolds number. However, experiments also show convectively unstable stationary vortices due to cross-flow instability triggered by unavoidable surface roughness of the disk. We show that if the surface is sufficiently rough, laminar–turbulent transition can occur via a convectively unstable route ahead of the onset of absolute instability. In the present work we compare the laminar–turbulent transition processes with and without artificial surface roughnesses. The differences are clearly captured in the spectra of velocity time series. With the artificial surface roughness elements, the stationary-disturbance component is dominant in the spectra, whereas both stationary and travelling components are represented in spectra for the clean-disk condition. The wall-normal profile of the disturbance velocity for the travelling mode observed for a clean disk is in excellent agreement with the critical absolute instability eigenfunction from local theory; the wall-normal stationary-disturbance profile, by contrast, is distinct and the experimentally measured profile matches the stationary convective instability eigenfunction. The results from the clean-disk condition are compared with theoretical studies of global behaviours in spatially developing flow and found to be in good qualitative agreement. The details of stationary disturbances are also discussed and it is shown that the radial growth rate is in excellent agreement with linear stability theory. Finally, large stationary structures in the breakdown region are described.


2013 ◽  
Vol 716 ◽  
pp. 638-657 ◽  
Author(s):  
Shintaro Imayama ◽  
P. Henrik Alfredsson ◽  
R. J. Lingwood

AbstractThe onset of transition for the rotating-disk flow was identified by Lingwood (J. Fluid. Mech., vol. 299, 1995, pp. 17–33) as being highly reproducible, which motivated her to look for absolute instability of the boundary-layer flow; the flow was found to be locally absolutely unstable above a Reynolds number of 507. Global instability, if associated with laminar–turbulent transition, implies that the onset of transition should be highly repeatable across different experimental facilities. While it has previously been shown that local absolute instability does not necessarily lead to linear global instability: Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) has shown, using the linearized complex Ginzburg–Landau equation, that if the finite nature of the flow domain is accounted for, then local absolute instability can give rise to linear global instability and lead directly to a nonlinear global mode. Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) also showed that there is a weak stabilizing effect as the steep front to the nonlinear global mode approaches the edge of the disk, and suggested that this might explain some reports of slightly higher transition Reynolds numbers, when located close to the edge. Here we look closely at the effects the edge of the disk have on laminar–turbulent transition of the rotating-disk boundary-layer flow. We present data for three different edge configurations and various edge Reynolds numbers, which show no obvious variation in the transition Reynolds number due to proximity to the edge of the disk. These data, together with the application (as far as possible) of a consistent definition for the onset of transition to others’ results, reduce the already relatively small scatter in reported transition Reynolds numbers, suggesting even greater reproducibility than previously thought for ‘clean’ disk experiments. The present results suggest that the finite nature of the disk, present in all real experiments, may indeed, as Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) suggests, lead to linear global instability as a first step in the onset of transition but we have not been able to verify a correlation between the transition Reynolds number and edge Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document