Spline-based Path Tracking for VTOL Vehicles

2022 ◽  
Author(s):  
Marc Welsch ◽  
Walter Fichter
Keyword(s):  
Author(s):  
X. Wu ◽  
Y. Yang

This paper presents a new design of omnidirectional automatic guided vehicle based on a hub motor, and proposes a joint controller for path tracking. The proposed controller includes two parts: a fuzzy controller and a multi-step predictive optimal controller. Firstly, based on various steering conditions, the kinematics model of the whole vehicle and the pose (position, angle) model in the global coordinate system are introduced. Secondly, based on the modeling, the joint controller is designed. Lateral deviation and course deviation are used as the input variables of the control system, and the threshold value is switched according to the value of the input variable to realise the correction of the large range of posture deviation. Finally, the joint controller is implemented by using the industrial PC and the self-developed control system based on the Freescale minimum system. Path tracking experiments were made under the straight and circular paths to test the ability of the joint controller for reducing the pose deviation. The experimental results show that the designed guided vehicle has excellent ability to path tracking, which meets the design goals.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 671
Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Zhihong Li ◽  
Yunyi Jia

To improve the handling stability of automobiles and reduce the odds of rollover, active or semi-active suspension systems are usually used to control the roll of a vehicle. However, these kinds of control systems often take a zero-roll-angle as the control target and have a limited effect on improving the performance of the vehicle when turning. Tilt control, which actively controls the vehicle to tilt inward during a curve, greatly benefits the comprehensive performance of a vehicle when it is cornering. After analyzing the advantages and disadvantages of the tilt control strategies for narrow commuter vehicles by combining the structure and dynamic characteristics of automobiles, a direct tilt control (DTC) strategy was determined to be more suitable for automobiles. A model predictive controller for the DTC strategy was designed based on an active suspension. This allowed the reverse tilt to cause the moment generated by gravity to offset that generated by the centrifugal force, thereby significantly improving the handling stability, ride comfort, vehicle speed, and rollover prevention. The model predictive controller simultaneously tracked the desired tilt angle and yaw rate, achieving path tracking while improving the anti-rollover capability of the vehicle. Simulations of step-steering input and double-lane change maneuvers were performed. The results showed that, compared with traditional zero-roll-angle control, the proposed tilt control greatly reduced the occupant’s perceived lateral acceleration and the lateral load transfer ratio when the vehicle turned and exhibited a good path-tracking performance.


Sign in / Sign up

Export Citation Format

Share Document