crack path
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 73)

H-INDEX

31
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 363
Author(s):  
Abdulnaser M. Alshoaibi ◽  
Yahya Ali Fageehi

The aim of this paper was to present a numerical simulation of a crack growth path and associated stress intensity factors (SIFs) for linear elastic material. The influence of the holes’ position and pre-crack locations in the crack growth direction were investigated. For this purpose, ANSYS Mechanical R19.2 was introduced with the use of a new feature known as Separating Morphing and Adaptive Remeshing Technology (SMART) dependent on the Unstructured Mesh Method (UMM), which can reduce the meshing time from up to several days to a few minutes, eliminating long preprocessing sessions. The presence of a hole near a propagating crack causes a deviation in the crack path. If the hole is close enough to the crack path, the crack may stop at the edge of the hole, resulting in crack arrest. The present study was carried out for two geometries, namely a cracked plate with four holes and a plate with a circular hole, and an edge crack with different pre-crack locations. Under linear elastic fracture mechanics (LEFM), the maximum circumferential stress criterion is applied as a direction criterion. Depending on the position of the hole, the results reveal that the crack propagates in the direction of the hole due to the uneven stresses at the crack tip, which are consequences of the hole’s influence. The results of this modeling are validated in terms of crack growth trajectories and SIFs by several crack growth studies reported in the literature that show trustworthy results.


2021 ◽  
pp. 104504
Author(s):  
Xu Chang ◽  
Xu Zhang ◽  
Long Cheng ◽  
Lei Fu
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7349
Author(s):  
Ahmed Bahgat Tawfik ◽  
Sameh Youssef Mahfouz ◽  
Salah El-Din Fahmy Taher

The numerical simulation of concrete fracture is difficult because of the brittle, inelastic-nonlinear nature of concrete. In this study, notched plain and reinforced concrete beams were investigated numerically to study their flexural response using different crack simulation techniques in ABAQUS. The flexural response was expressed by hardening and softening regime, flexural capacity, failure ductility, damage initiation and propagation, fracture energy, crack path, and crack mouth opening displacement. The employed techniques were the contour integral technique (CIT), the extended finite element method (XFEM), and the virtual crack closure technique (VCCT). A parametric study regarding the initial notch-to-depth ratio (ao/D), the shear span-to-depth ratio (S.S/D), and external post-tensioning (EPT) were investigated. It was found that both XFEM and VCCT produced better results, but XFEM had better flexural simulation. Contrarily, the CIT models failed to express the softening behavior and to capture the crack path. Furthermore, the flexural capacity was increased after reducing the (ao/D) and after decreasing the S.S/D. Additionally, using EPT increased the flexural capacity, showed the ductile flexural response, and reduced the flexural softening. Moreover, using reinforcement led to more ductile behavior, controlled damage propagation, and a dramatic increase in the flexural capacity. Furthermore, CIT showed reliable results for reinforced concrete beams, unlike plain concrete beams.


2021 ◽  
Vol 29 (3) ◽  
pp. 67-74
Author(s):  
E. Baesu ◽  
DM. Iliescu ◽  
BV. Radoiu ◽  
S. Halichidis

Abstract Bone is a complex material that can be regarded as an anisotropic elastic composite material. The problem of crack propagation in human bone is analyzed by using a generalization of the maximum tensile stress criterion (MTS). The results concern the critical stress for crack propagation and the direction of the crack path in Iliac bone.


2021 ◽  
Author(s):  
LINQI ZHUANG ◽  
LUCIO MARAGONI ◽  
RAMESH TALREJA

Transverse crack propagating towards a cross-ply interface is investigated in this study. The non-uniform fiber distribution near ply interface is modelled explicitly in order to study the effect of microstructure on crack path and initiation of delamination. The growth of fiber/matrix interfacial debond and debond kinking out of interface are analyzed based on a combination of energy and stress-based approach, which is convenient in predicting matrix crack path. Kinking of transverse crack tip when it approaches ply interface is investigated using an energy-based approach. It is found that predicted matrix crack path and crack tip kinking behavior near interface is strongly influenced by the local microstructure. The obtained results indicate that an induced symmetrical delamination, i.e., interface cracks of equal length on either side of the transverse ply crack, as often assumed in modeling studies, is not always a favorable damage mode.


Author(s):  
Monika Duda ◽  
Dariusz Rozumek ◽  
Grzegorz Lesiuk ◽  
Michał Smolnicki ◽  
Bartosz Babiarczuk ◽  
...  

AbstractThe paper contains the results of an experimental investigation of fatigue crack development under mixed-mode I + II and I + III in heat-treated 42CrMo4 steel. Tests were performed on heat-treated compact tension shear specimens and rectangular cross-section specimens for mixed-mode I + III. Mixed-mode I + II tests were conducted for 30 and 60° loading angle, while the test for I + III mixed-mode was conducted for 30 and 45°. Additionally, the paper presents fracture analysis results of fatigue crack path development.


2021 ◽  
Vol 57 (4) ◽  
pp. 569-580
Author(s):  
V. D. Kurguzov ◽  
A. G. Demeshkin

Author(s):  
Karol Lewandowski ◽  
Łukasz Kaczmarczyk ◽  
Ignatios Athanasiadis ◽  
John F. Marshall ◽  
Chris J. Pearce

This paper presents a mathematical formulation and numerical modelling framework for brittle crack propagation in heterogeneous elastic solids. Such materials are present in both natural and engineered scenarios. The formulation is developed in the framework of configurational mechanics and solved numerically using the finite-element method. We show the methodology previously established for homogeneous materials without the need for any further assumptions. The proposed model is based on the assumption of maximal dissipation of energy and uses the Griffith criterion; we show that this is sufficient to predict crack propagation in brittle heterogeneous materials, with spatially varying Young’s modulus and fracture energy. Furthermore, we show that the crack path trajectory orientates itself such that it is always subject to Mode-I. The configurational forces and fracture energy release rate are both expressed exclusively in terms of nodal quantities, avoiding the need for post-processing and enabling a fully implicit formulation for modelling the evolving crack front and creation of new crack surfaces. The proposed formulation is verified and validated by comparing numerical results with both analytical solutions and experimental results. Both the predicted crack path and load–displacement response show very good agreement with experiments where the crack path was independent of material heterogeneity for those cases. Finally, the model is successfully used to consider the real and challenging scenario of fracture of an equine bone, with spatially varying material properties obtained from CT scanning. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


Sign in / Sign up

Export Citation Format

Share Document