Static Aerodynamic Analysis of a Generic Fifth Generation Fighter Aircraft

2022 ◽  
Author(s):  
Tamas Bykerk ◽  
Nicholas F. Giannelis ◽  
Gareth A. Vio

Subject Fifth-generation fighter aircraft manufacture. Significance Turkey and the United Kingdom have signed a 125-million-dollar deal to develop an advanced fighter aircraft, the TFX. The final agreement may imply only a design consultancy for BAE Systems, but it could also lead to a collaborative programme with state monopoly Turkish Aerospace Industries (TAI) drawing in other UK firms to aid development and fill technology gaps. Impacts TAI's deal with BAE Systems marks a further step in ambitious plans to expand Turkey’s aerospace industry. A fighter aircraft with fifth-generation capabilities would be a step change in Turkey’s technological status and military ambitions. Developing capacity in higher-value exports should help rein in Turkey's large external deficit. The deal will also help maintaining advanced UK capabilities, as Western Europe has no plans to develop a comparable aircraft.


Author(s):  
Ramraj H. Sundararaj ◽  
T. Chandra sekar ◽  
Rajat Arora ◽  
A. N. Rao ◽  
Abhijit Kushari

Abstract Thrust vectoring is a requirement for fifth generation fighters, giving them super-maneuverability capabilities, allowing them to execute tactical maneuvers that are not possible using conventional aerodynamic mechanisms. The most widely used and successful method for achieving this is by using gimbaled engines or nozzles. The complexities involved in this method, have encouraged future engine designers to explore different avenues for achieving thrust vectoring, one of which is fluidic thrust vectoring. In fluidic thrust vectoring, jet deflection is achieved by fluid injection at various locations on the nozzle. During thrust vectoring operations, the engine performance is affected. This is primarily due to the change in effective nozzle area. When a nozzle is gimbaled, as is the method used in currently operational thrust vectored engines, or during fluidic thrust vectoring operations, there is a change in effective nozzle area. This impacts the engine mass flow rate, thus affecting the engine operation. The change in performance is similar to that of an engine fitted with a variable area nozzle. In this study, we attempted to retrofit a thrust vectoring nozzle to an existing engine designed for a fourth-generation fighter aircraft, in order to give it fifth-generation fighter aircraft capabilities. A Twin spool mixed flow turbofan engine with a convergent nozzle is selected and its performance is simulated using Gasturb 13. The baseline engine consists of a low pressure spool, high pressure spool, combustion chamber and convergent-divergent nozzle. For the sake of simplicity, the convergent-divergent nozzle is replaced with a convergent nozzle, with no loss in thrust at design point. The design point is arrived at based on engine data available in open literature. Following this, offdesign performance is simulated, for studying the effect of thrust vectoring operations, which are modeled as a nozzle area change. Suitably scaled generic maps provided in Gasturb are used for off-design simulations. The effect of nozzle area change on engine performance is studied at sea level static conditions. The nozzle area is decreased by a maximum of 15%, in steps of 1%. During thrust vectoring operations, there is a significant change in bypass ratio and fan surge margin, with the other performance parameters being relatively constant. Following this, simulations are conducted at different flight conditions to understand the effect of nozzle area change for different flight regimes. A total of seven different flight conditions are selected to understand the operational envelope of thrust vectoring operation. It is found that at all flight conditions, thrust vectoring has a significant influence on bypass ratio and fan surge margin. While for most conditions, there is an improvement in fan surge margin, there are two conditions where fan surge margin decreases substantially.


2020 ◽  
Vol 10 (2) ◽  
pp. 82-93
Author(s):  
Eduardo Rosa ◽  
Ola Eiken ◽  
Mikael Grönkvist ◽  
Roger Kölegård ◽  
Nicklas Dahlström ◽  
...  

Abstract. Fighter pilots may be exposed to extended flight missions. Consequently, there is increasing concern about fatigue. We investigated the effects of fatigue and cognitive performance in a simulated 11-hr mission in the 39 Gripen fighter aircraft. Five cognitive tasks were used to assess cognitive performance. Fatigue was measured with the Samn–Perelli Fatigue Index. Results showed that performance in the non-executive task degraded after approximately 7 hr. Fatigue ratings showed a matching trend to the performance in this task. Performance in tasks taxing executive functions did not decline. We interpreted that fatigue can be overridden by increased attentional effort for executive tasks but not for non-executive components of cognition. Participants underestimated their performance and metacognitive accuracy was not influenced by fatigue.


Author(s):  
Andrzej Flaga ◽  
J. Podgorski ◽  
E. Blazik-Borowa ◽  
Jaroslaw Bec ◽  
G. Bosak

Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 158-165
Author(s):  
Roman S. Kulikov ◽  
◽  
Aleksandr A. Chugunov ◽  
Nikita I. Petukhov ◽  
Ivan R. Indrikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document