Reentry trajectory optimization using direct collocation method and nonlinear programming

Author(s):  
Lianghui Tu ◽  
Jian-ping Yuan
2012 ◽  
Vol 433-440 ◽  
pp. 6652-6656 ◽  
Author(s):  
Tao Liu ◽  
Yu Shan Zhao ◽  
Peng Shi ◽  
Bao Jun Li

Trajectory optimization problem for spacecraft proximity rendezvous with path constraints was discussed using direct collocation method. Firstly, the model of spacecraft proximity rendezvous in elliptic orbit optimization control problem was presented, with the dynamic equations established in the target local orbital frame, and the performance index was minimizing the total fuel consumption. After that the optimal control problem was transcribed into a large scale problem of Nonlinear Programming Problem (NLP) by means of Hermite-Simpson discretization, which was one of the direct collocation methods. Then the nonlinear programming problem was solved using MATLAB software package SNOPT. Finally, to verify this method, the fuel-optimal trajectory for finite thrust was planned for proximity rendezvous with elliptic reference orbit. Numerical simulation results demonstrate that the proposed method was feasible, and was not sensitive to the initial condition, having good robustness.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Tieying Jiang ◽  
Jie Li ◽  
Bing Li ◽  
Kewei Huang ◽  
Chengwei Yang ◽  
...  

The trajectory of a tubular launched cruising unmanned aerial vehicle is optimized using the modified direct collocation method for attacking a target at back slope under a wind gradient. A mathematical model of the cruising unmanned aerial vehicle is established based on its operational and motion features under a wind gradient to optimize the trajectory. The motion characteristics of  “altitude adjustment” and “suicide attack” are taken into full account under the combat circumstance of back slope time key targets. By introducing a discrete time function, the trajectory optimization is converted into a nonlinear programming problem and the SNPOT software is applied to solve for the optimal trajectory of the missile under different wind loads. The simulation results show that, for optimized trajectories, the average attack time decreased by up to 29.1% and the energy consumption is reduced by up to 25.9% under specified wind gradient conditions.A,ωdire, andWmaxhave an influence on the flight trajectories of cruising unmanned aerial vehicle. This verifies that the application of modified direct collocation method is reasonable and feasible in an effort to achieve more efficient missile trajectories.


2012 ◽  
Vol 591-593 ◽  
pp. 2624-2627
Author(s):  
Xu Zhong Wu ◽  
Sheng Jing Tang ◽  
Jie Guo

This paper deals with the reentry trajectory optimization problem for lunar return with consideration of entry vehicle’s fore-body shape. Three performance objectives are applied in this work: cross range, peak heat flux and total heat load. Aerothermodynamic models are based on modified Newtonian impact theory and semi-empirical correlations for convective and radiative stagnation-point heat transfer. A population based evolutionary algorithm has been executed to optimize the multidisciplinary problem. At last the numerical example showed the Pareto frontiers for spherical segment and sphere cone respectively, one of optimal trajectory designs selected from the Pareto frontiers are showed in this paper. The mission requirements are satisfied through the aerothermodynamic balance.


2018 ◽  
Vol 51 (1) ◽  
pp. 650-655 ◽  
Author(s):  
G. Naresh Kumar ◽  
Md Shafeeq Ahmed ◽  
A.K. Sarkar ◽  
S.E. Talole

Sign in / Sign up

Export Citation Format

Share Document