scholarly journals Determination of chemical composition on internal surfaces of hollow reinforced concrete structures under the influence of corrosion

2020 ◽  
pp. 123-128
Author(s):  
A. S. Bryukhova ◽  

The paper presents the results of experimental studies on the determination of corrosion products on the surface of reinforced concrete structures. Methods for creating samples with artificial electrocorrosion under conditions close to real operation are discussed. The results of testing samples with different degrees of corrosion using laser-spark emission spectrometry (LIBS) devices are presented. The test is carried out on two different devices, a LIBS setup and a portable American-made laser analyzer LIBZ-300pe

2021 ◽  
Vol 887 ◽  
pp. 542-547
Author(s):  
A.S. Bryukhova ◽  
N.V. Volkova ◽  
A.A. Kuznetsov ◽  
A.Yu. Kuzmenko

The paper presents the results of experimental studies on the determination of corrosion products on the surface of reinforced concrete structures. This paper also discusses methods for creating samples with artificial electro corrosion under conditions close to real operation. The paper presents the results of testing samples using laser-inducted breakdown spectrometry (LIBS) devices.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 370 ◽  
Author(s):  
Oleksandr Semko ◽  
Viktor Dariienko ◽  
Vitaliy Sirobaba

The calculation, modeling and experimental research of steel-concrete tubular elements made of thin-walled galvanized sheet metal and lightweight concrete have been carried out. The proposed type of structures can be used as a separate structure in the form of a column or a pillar, and one of the types of the reinforcement of a certain light structure. The basic technological and constructive requirements for manufacturing and further exploitation of structures are given. For determination of actual work’s indexes of constructions experimental research of standards are undertaken, and recommendations on adjustment of well-known calculation formulas of close constructions as for structural parameters are given. The design (modeling) was performed in MSC / Nastran software. An analysis of the proposed structures use is carried out with the corresponding conclusions. 


2017 ◽  
Vol 9 (2) ◽  
pp. 70-78 ◽  
Author(s):  
Justas SLAITAS ◽  
Zbynek HLAVAC ◽  
Arnoldas ŠNEIDERIS

This article examines flexural reinforced concrete structures condition assessment process in existing buildings on the stage where the reinforcement stress is between the yield and the tensile strength. The research is made on V. Jokūbaitis proposed methodology directly measuring the compression zone height, allowing us to evaluate the behavior of reinforced concrete beam fracture sufficiently precisely. This paper confirms the hypothesis that, when reinforcement reaches yielding stress, elastic strain dominates in concrete‘s compression zone and it is reasonable to use triangular concrete compression zone diagram, without tensile concrete above crack evaluation. The methodology of reinforced concrete structures bearing capacity assessment according to limit normal section crack depth is proposed. There is established connection between bending moments, when reinforcement achieve yielding stress and tensile strength, which allows us to decide about structures bearing capacity reserve. The results are confirmed with experimental studies and calculated values obtained by methodologies based on different reduced stress diagrams of concrete‘s compressive zone.


Author(s):  
Denys Chernyshev ◽  
Yulia Makarenko ◽  
Tetiana Khomutetska ◽  
Valeriy Makarenko

The results of experimental studies have shown a strong effect of diffusion hydrogen on the static and cyclic parameters of crack resistance of reinforcing steel. It was found that with increasing flooding, especially when the hydrogen content exceeds 5 cm3/100g, both static strength and long-term strength (fatigue) decrease sharply. Moreover, these areas of hydrogen solution in reinforcing steel are characterized by a viscous nature of fracture, while for heavily flooded reinforcement (from 5 to 12 cm3/100g) is characterized by brittle fracture by the mechanism of microcracking in the hardened (martensite or troostite structure). The analysis of the obtained experimental results allowed to determine the optimal hydrogen content in the reinforcing steel (3…5 cm3/100g), the excess of which can cause a decrease in the crack resistance of the reinforcement during long-term operation, especially in corrosive environments. The mechanism of hydrogen influence on crack resistance of metal at static and alternating loading which consists in diffusion and dislocation movement of hydrogen in structure of a reinforcing core that as a result that causes strong flooding of steel and its embrittlement is offered. It is established that carbon and low-alloy sieves, which are characterized by ferritic-pearlitic and sorbitol structure provide high resistance, especially to long-term fatigue, and the transition to steels with a structure of martensite or tempered (transient structure of bainite) structure of bainite sharply reduces reinforcing steel, which makes it impossible to use in the manufacture of reinforcement involved in reinforced concrete structures designed for long-term operation (more than 50…60 years). Thus, the obtained diagram can be recommended to designers of reinforced concrete structures for hydraulic purposes, as it greatly facilitates the reasonable choice of reinforcement in the development of reinforced concrete structures for responsible and long-term use.


Sign in / Sign up

Export Citation Format

Share Document