Embedded Response Surfaces Approach for Uncertainty Quantification

2015 ◽  
Author(s):  
D. Busby ◽  
T. Chugunova
2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Richard Ahlfeld ◽  
Francesco Montomoli ◽  
Mauro Carnevale ◽  
Simone Salvadori

Problems in turbomachinery computational fluid dynamics (CFD) are often characterized by nonlinear and discontinuous responses. Ensuring the reliability of uncertainty quantification (UQ) codes in such conditions, in an autonomous way, is challenging. In this work, we suggest a new approach that combines three state-of-the-art methods: multivariate Padé approximations, optimal quadrature subsampling (OQS), and statistical learning. Its main component is the generalized least-squares multivariate Padé–Legendre (PL) approximation. PL approximations are globally fitted rational functions that can accurately describe discontinuous nonlinear behavior. They need fewer model evaluations than local or adaptive methods and do not cause the Gibbs phenomenon like continuous polynomial chaos methods. A series of modifications of the Padé algorithm allows us to apply it to arbitrary input points instead of optimal quadrature locations. This property is particularly useful for industrial applications, where a database of CFD runs is already available, but not in optimal parameter locations. One drawback of the PL approximation is that it is nontrivial to ensure reliability. To improve stability, we suggest to couple it with OQS. Our reasoning is that least-squares errors, caused by an ill-conditioned design matrix, are the main source of error. Finally, we use statistical learning methods to check smoothness and convergence. The resulting method is shown to efficiently and correctly fit thousands of partly discontinuous response surfaces for an industrial film cooling and shock interaction problem using only nine CFD simulations.


Author(s):  
Richard Ahlfeld ◽  
Mauro Carnevale ◽  
Simone Salvadori ◽  
Francesco Montomoli

There is a need to automate stochastic uncertainty quantification codes in the digital age. Problems in turbomachinery Computational Fluid Dynamics (CFD) are characterised by non-linear and discontinuous responses and long run times. Ensuring the reliability of Uncertainty Quantification (UQ) codes in such conditions, in an autonomous way, is a challenging problem. Human involvement has always been required. In this work, we therefore suggest a new approach that combines three state-of-the-art methods: multivariate Padé approximations, Optimal Quadrature Subsampling and Statistical Learning. Its main component is the generalised least squares multivariate Padé-Legendre (PL) approximation. PL approximations are globally fitted rational functions that can accurately describe discontinuous non-linear behaviour. They need fewer model evaluations than local or adaptive methods and do not cause the Gibbs phenomenon, like continuous Polynomial Chaos methods. We describe a series of modifications of the Padé algorithm that allow us to apply it to arbitrary input points instead of optimal quadrature locations. This property is particularly useful for industrial applications, where a database of CFD runs is already available, but not in optimal parameter locations. One drawback of the PL approximation is that it is non-trivial to ensure reliability for multiple input parameters. We therefore suggest a new method to improve stability in this work: Optimal Quadrature Subsampling. Our argument is that least squares errors, caused by an ill-conditioned design matrix, are the main source of error. Finally, we use statistical learning techniques to automatically guarantee smoothness and convergence. The resulting method is shown to efficiently and correctly fit thousands of partly discontinuous response surfaces for an industrial film cooling and shock interaction problem automatically and using only 9 CFD simulations. It can be applied to any other UQ problem that is characterised by a limited amount of data and the presence of discontinuities.


Author(s):  
Luca Margheri ◽  
Pierre Sagaut

In the last decade there has been a growing interest in urban flow CFD simulations. As RANS approaches demonstrated to be not enough accurate to predict urban flows, people focus more and more on LES simulations. Though better results could be obtained with fine grid LES, the complexity of the urban physics seems to vanish the increasing computational resources. A different approach is herein considered, proposing a first uncertainty quantification (UQ) analysis on a single building pollutant dispersion case. A hybrid method merging the anchored-ANOVA and the POD/Kriging-based response surface is proposed to reduce the costs of the UQ analysis. Moreover, simulations are performed by the Lattice Boltzman (LBM) code PowerFLOW. Sensitivity results are presented showing the importance of vortex dynamics and the high sensitivity to the wind angle.


Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

Sign in / Sign up

Export Citation Format

Share Document