1998 ◽  
Vol 11 (02) ◽  
pp. 85-93 ◽  
Author(s):  
Joanne R. Cockshutt ◽  
H. Dobson ◽  
C. W. Miller ◽  
D. L. Holmberg ◽  
Connie L. Taves ◽  
...  

SummaryA retrospective case series study was done to determine the long-term outcome of operations upon dogs treated for canine hip dysplasia by means of a triple pelvic osteotomy (TPO). Twentyfour dogs with bilateral hip dysplasia, that received a unilateral TPO between January 1988 and June 1995, were re-examined at the Ontario Veterinary College. The assessment included physical, orthopedic and lameness examinations, standard blood work, pelvic radiographs and force plate gait analysis. They were compared to bilaterally dysplastic dogs that had not been treated, and also to normal dogs. Force plate data analysis demonstrated a significant increase in peak vertical force (PVF) and mean vertical force over stance (MVF) in the limb that underwent surgical correction by means of a TPO, when compared to the unoperated hip. It was determined that performing a unilateral TPO on a young dysplastic dog resulted in greater forces and weight bearing being projected through the TPO corrected limb when compared to the unoperated limb.Dogs with bilateral hip dysplasia treated with a unilateral triple pelvic osteotomy (TPO) were assessed by force plate gait analysis, radiographs and orthopedic examination. There was a significant increase in hip Norberg angles over time, although degenerative changes did progress. Limbs that had been operated upon had significantly greater peak and mean ground reaction forces than limbs that had not received an operation.


2014 ◽  
Vol 134 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Hisatomo Miyata ◽  
Kazutoshi Miyashita ◽  
Takayuki Endo ◽  
Yuichi Shimasaki ◽  
Tatsuya Iizaka ◽  
...  

1991 ◽  
Vol 19 (3) ◽  
pp. 142-162 ◽  
Author(s):  
D. S. Stutts ◽  
W. Soedel ◽  
S. K. Jha

Abstract When measuring bearing forces of the tire-wheel assembly during drum tests, it was found that beyond certain speeds, the horizontal force variations or so-called fore-aft forces were larger than the force variations in the vertical direction. The explanation of this phenomenon is still somewhat an open question. One of the hypothetical models argues in favor of torsional oscillations caused by a changing rolling radius. But it appears that there is a simpler answer. In this paper, a mathematical model of a tire consisting of a rigid tread ring connected to a freely rotating wheel or hub through an elastic foundation which has radial and torsional stiffness was developed. This model shows that an unbalanced mass on the tread ring will cause an oscillatory rolling motion of the tread ring on the drum which is superimposed on the nominal rolling. This will indeed result in larger fore-aft than vertical force variations beyond certain speeds, which are a function of run-out. The rolling motion is in a certain sense a torsional oscillation, but postulation of a changing rolling radius is not necessary for its creation. The model also shows the limitation on balancing the tire-wheel assembly at the wheel rim if the unbalance occurs at the tread band.


2010 ◽  
Vol 152-153 ◽  
pp. 164-170
Author(s):  
Jie Liu ◽  
Jian Lin Li ◽  
Ying Xia Li ◽  
Shan Shan Yang ◽  
Ji Fang Zhou ◽  
...  

Specific to the improvement in the present research of mechanical response under cyclic loading, this paper, taking the calcareous middle- coarse sandstone as the research subject and the RMT-150C experimental system in which data is recoded by ms magnitude as the platform, develops several related models concerning the unloading rate of triangle waves. The unloading process is divided into lag time segment and non-lag time segment, with criterions and related parameters provided as well. The term apparent elastic modulus is defined. The test data analysis shows that there exist a linear relationship between the apparent modulus and instant vertical force before load damage in non-lag time segment. On the preceding basis, a rate-dependent model of triangular wave un-installation section in non-lag time segment is established. Due to the inability of the loading equipment to accurately input the triangle wave, the average loading rate is amended and a constant term is added into it. The model is proved to be reliable, as the predicted value of the deformation rate and the stress strain curve coincides with measured value. At the same time, the impact of the lag time is pointed out quantitatively and a predication model of lag time segment is set up.


Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

The majority of the people with incomplete spinal cord injury lose their walking ability, due to the weakness of their muscle motors in providing torque. As a result, developing assistive devices to improve their conditionis of great importance. In this study, a combined application of the saddle-assistive device (S-AD) and mechanical medial linkage or thosis was evaluated to improve the walking ability in patients with spinal cord injury in the gait laboratory. This mobile assistive device is called the saddle-assistive device equipped with medial linkage or thosis (S-ADEM). In this device, a mechanical orthosis was used in a wheeled walker as previously done in the literature. Initially, for evaluation of the proposed assistive device, the experimental results related to the forces and torques exerted on the feet and upper limbs of a person with the incomplete Spinal Cord Injury (SCI) during walking usingthe standard walker were compared with an those obtained from using the S-ADEM on an able-bodied subject. It was found that using this combination of assistive devices decreases the vertical force and torque on the foot at the time of walking by 53% and 48%, respectively compared to a standard walker. Moreover, the hand-reaction force on the upper limb was negligible instanding and walking positions usingthe introduced device. The findings of this study revealed that the walking ability of the patients with incomplete SCI was improved using the proposed device, which is due to the bodyweight support and the motion technology used in it.


Sign in / Sign up

Export Citation Format

Share Document