scholarly journals Development of an Efficient Anaerobic Co-digestion Process for Biogas from Food Waste and Paper

2021 ◽  
Vol 59 (4) ◽  
pp. 165-171
Author(s):  
Naoto SHIMIZU ◽  
Kazuto YOSHIDA
Keyword(s):  
2019 ◽  
Vol 130 ◽  
pp. 1108-1115 ◽  
Author(s):  
Dalal E. Algapani ◽  
Wei Qiao ◽  
Marina Ricci ◽  
Davide Bianchi ◽  
Simon M. Wandera ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 100310 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Shahrom Md Zain ◽  
Biplob Kumar Pramanik

2019 ◽  
Vol 7 (6) ◽  
pp. 2250-2264 ◽  
Author(s):  
Abdulmoseen Segun Giwa ◽  
Heng Xu ◽  
Fengmin Chang ◽  
Xiaoqian Zhang ◽  
Nasir Ali ◽  
...  

2019 ◽  
Vol 42 (9) ◽  
pp. 1834-1839 ◽  
Author(s):  
Noorlisa Harun ◽  
Zuraini Hassan ◽  
Norazwina Zainol ◽  
Wan Hanisah Wan Ibrahim ◽  
Haslenda Hashim

Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 46
Author(s):  
Finger ◽  
Stepanovic ◽  
Llano

Anaerobic digestion of urban organic wastes, farming slurries or sewage sludge is a common practice in waste treatment plants. In the city of Reykjavik, the organic waste fraction constituted by 60% of biomass and 40% of food waste will be transformed by the local waste company SORPA providing biofuel for up to 10% of the cars. Such measures belong to the 2018-2030 Climate Action Plan from the Icelandic Government.


2006 ◽  
Vol 54 (2) ◽  
pp. 19-24 ◽  
Author(s):  
F. Hernon ◽  
C. Forbes ◽  
E. Colleran

Large quantities of biodegradable food waste in the form of fruit and vegetables are still being deposited in landfill sites in Ireland. The development of an anaerobic digestion process using fermentative species which degrade the carbohydrate-rich waste could divert the food waste from landfills. We identified fermentative species grown on glucose and sucrose at mesophilic and thermophilic temperatures using molecular biology techniques. The dominating fermentative bacteria of the mesophilic sludge were of the Bacteroidetes and Spirochaetes classes. Although both groups of bacteria are typically fermentative their substrate range appears to be limited. The dominating fermentative bacteria in the thermophilic sludge was Thermoanaerobacterium aotearoense of the Clostridia class. The indications are that Thermoanaerobacterium aotearoense may be highly suitable to biodegrade a carbohydrate-rich influent feed due to its possibly very rapid growth rate and also an extensive substrate range.


Sign in / Sign up

Export Citation Format

Share Document