scholarly journals Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience

2012 ◽  
Vol 37 (15) ◽  
pp. 11549-11555 ◽  
Author(s):  
C. Cavinato ◽  
A. Giuliano ◽  
D. Bolzonella ◽  
P. Pavan ◽  
F. Cecchi
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3552 ◽  
Author(s):  
Elena Albini ◽  
Isabella Pecorini ◽  
Giovanni Ferrara

This paper assessed the effect of dark fermentation, the fermentative phase in a two-stage anaerobic digestion system, in terms of digestate biostabilization efficiency. The digestates analyzed in this study were obtained from a pilot-scale system in which two different substrates were used in order to simulate both the digestion and co-digestion process. Biostabilization performances were evaluated by measuring the specific oxygen uptake rate (SOUR) of the outgoing digestates. This index allowed us to define the degree of effectiveness in terms of stabilization of organic matter, between the traditional anaerobic digestion process and the two-stage configuration. Considering the traditional process as a reference scenario, the results highlighted an increase in biological stability for the two-stage co-digestion process, consisting of a dark fermentation stage, followed by an anaerobic digestion one. Digestates biostabilization efficiency increased up from 6.5% to 40.6% from the traditional one-stage configuration to the two-stage one by improving the anaerobic digestion process through a preliminary fermentative stage. The advantages of the two-stage process were due to the role of dark fermentation as a biological pre-treatment. Considering the partial stability results related to the second stage, biological stability was improved in comparison to a single-stage process, reaching an efficiency of 42.2% and 55.8% for the digestion and co-digestion scenario respectively. The dark fermentation phase allowed for a higher hydrolysis of the substrate, making it more easily degradable in the second phase. Results demonstrated better biostabilization performances of the outgoing digestates with the introduction of dark fermentation, resulting in more stable digestates for both the digestion and co-digestion process.


2021 ◽  
Author(s):  
Farizah Fadzil ◽  
Farihah Fadzil ◽  
Amir Fahim Norazman ◽  
Roslinda Seswoya

Abstract Food waste was massively disposed at landfills daily, and this method is no longer effective in managing waste due to the limited space and environmental issues. An alternative solution was explored in managing the food waste, and anaerobic digestion serve as the best solution. Food waste was digested anaerobically in a lab-scale and pilot-scale anaerobic digester. The performance of a batch pilot-scale anaerobic digestion of food waste, on the other hand, is less documented. The goal of this research is to look into a batch pilot-scale anaerobic digester for food waste, with a focus on methane potential and kinetic studies. A single-stage anaerobic digestion of food waste was carried out with an inoculum to substrate ratio (I/S) of 2.0. A variety of tests were carried out to identify the properties of the food waste and the inoculum employed. Effluent was collected daily for the monitoring process. The pH and volatile fatty acid to total alkalinity ratio (VFA/TA) were monitored daily to ensure that the anaerobic digestion process remained stable. The VFA/TA ratio suggested that the anaerobic digestion process was stable throughout the anaerobic digestion process. The methane accumulation for 26 days monitoring is 463250 mL. The ultimate methane yield of 5103.6 mL CH4/gVS was observed. The maximum removal efficiency for TS, VS, and COD in this investigation was 85.32, 94.15, and 93.52 %, showing that food waste was efficiently decomposed for biomethane conversion. The Modified Gompertz (GM) and Logistic function models were used to conduct the kinetic analysis. The results reveal that the GM model provides a higher R2 value than the logistic function model, thus the GM model is more suited in explaining the performance of the anaerobic digestion process.


2019 ◽  
Vol 130 ◽  
pp. 1108-1115 ◽  
Author(s):  
Dalal E. Algapani ◽  
Wei Qiao ◽  
Marina Ricci ◽  
Davide Bianchi ◽  
Simon M. Wandera ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 100310 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Shahrom Md Zain ◽  
Biplob Kumar Pramanik

2019 ◽  
Vol 7 (6) ◽  
pp. 2250-2264 ◽  
Author(s):  
Abdulmoseen Segun Giwa ◽  
Heng Xu ◽  
Fengmin Chang ◽  
Xiaoqian Zhang ◽  
Nasir Ali ◽  
...  

2019 ◽  
Vol 42 (9) ◽  
pp. 1834-1839 ◽  
Author(s):  
Noorlisa Harun ◽  
Zuraini Hassan ◽  
Norazwina Zainol ◽  
Wan Hanisah Wan Ibrahim ◽  
Haslenda Hashim

2014 ◽  
Vol 69 (11) ◽  
pp. 2200-2209 ◽  
Author(s):  
A. Giuliano ◽  
L. Zanetti ◽  
F. Micolucci ◽  
C. Cavinato

A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m3 per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected.


Sign in / Sign up

Export Citation Format

Share Document