Detection of antimalarial drug resistance polymorphisms in Plasmodium falciparum chloroquine resistance transporter and Plasmodium falciparum multidrug resistance 1 genes of Plasmodium falciparum found in Kano State, Nigeria

2021 ◽  
Vol 5 ◽  
pp. 8-14
Author(s):  
Al-Mukhtar Yahuza Adamu ◽  
Olayeni Stephen Olonitola ◽  
Helen Ileigo Inabo ◽  
Ahmad Babangida Suleiman

Objectives: In 2018, malaria claimed an estimated 380,000 lives in African region, with Nigeria accounting for 24.0% (91,368) of malaria deaths from the region. Mutations in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr-1) genes had reduced the effective use of artemisinin combination therapy through the development of resistance to these antimalarial agents. Our study set out to determine the antimalarial drug resistance polymorphisms in Pfcrt and Pfmdr-1 genes of P. falciparum isolates among patients in Kano State, Nigeria. Material and Methods: Malaria positive samples were collected across the three senatorial districts of Kano State. The samples were amplified using nested polymerase chain reaction to detect the Pfcrt and Pfmdr-1 genes. The amplicons were sequenced and bioinformatic analysis was done using CLC Sequence viewer 8.0 and BioEdit sequence alignment editor to detect the single-nucleotide polymorphisms. Results: In the Pfcrt gene, CVIET haplotype was seen in 26.2% of the samples while only two samples showed the 86Y mutation in the Pfmdr-1 gene. All the 86Y mutations and majority of the CVIET haplotypes were detected in the patients from rural settings where some of them noted that they consumed modern and traditional (herbs) antimalarial agents. One sample was observed to have the CVIET haplotype and N86Y mutation while the other five CVIET haplotypes were seen in five separate samples. A new mutation V62A was found in the Pfmdr-1 gene as observed in one of the sample. Conclusion: It is imperative to ensure the rational use of the right antimalarial agents and employ continuous resistance surveillance/mapping to ensure synergy in malaria containment and elimination strategies.

2014 ◽  
Vol 58 (12) ◽  
pp. 7032-7040 ◽  
Author(s):  
Nathalie Wurtz ◽  
Bécaye Fall ◽  
Aurélie Pascual ◽  
Mansour Fall ◽  
Eric Baret ◽  
...  

ABSTRACTThe involvement ofPfmdr1(Plasmodium falciparummultidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms inPfmdr1(N86Y, Y184F, S1034C, N1042D, and D1246Y) andPfcrt(K76T) andin vitroresponses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174Plasmodium falciparumisolates from Dakar, Senegal. ThePfmdr186Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. ThePfmdr186Y mutation was significantly associated with increased susceptibility to MDAQ (P= 0.0023), LMF (P= 0.0001), DHA (P= 0.0387), and MQ (P= 0.00002). The N86Y mutation was not associated with CQ (P= 0.214) or QN (P= 0.287) responses. ThePfmdr1184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P= 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). ThePfmdr186Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P= 0.0136), LMF (P= 0.0019), and MQ (P= 0.0001). The additionalPfmdr186Y mutation increased significantly thein vitrosusceptibility to MDAQ (P< 0.0001), LMF (P< 0.0001), MQ (P< 0.0001), and QN (P= 0.0026) in wild-typePfcrtK76 parasites. The additionalPfmdr186Y mutation significantly increased thein vitrosusceptibility to CQ (P= 0.0179) inPfcrt76T CQ-resistant parasites.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Mathieu Gendrot ◽  
Silman Diawara ◽  
Marylin Madamet ◽  
Mame Bou Kounta ◽  
Sébastien Briolant ◽  
...  

ABSTRACT Polymorphisms and the overexpression of transporter genes, especially of the ATP-binding cassette superfamily, have been involved in antimalarial drug resistance. The objective of this study was to use 77 Senegalese Plasmodium falciparum isolates to evaluate the association between the number of Asn residues in the polymorphic microsatellite region of the Plasmodium falciparum multidrug resistance 6 gene (Pfmdr6) and the ex vivo susceptibility to antimalarials. A significant association was observed between the presence of 7 or 9 Asn repeats and reduced susceptibility to quinine.


2010 ◽  
Vol 42 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Valérie Andriantsoanirina ◽  
Didier Ménard ◽  
Luciano Tuseo ◽  
Rémy Durand

2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Ruimin Zhou ◽  
Chengyun Yang ◽  
Suhua Li ◽  
Yuling Zhao ◽  
Ying Liu ◽  
...  

ABSTRACT Angola was the main origin country for the imported malaria in Henan Province, China. Antimalarial drug resistance has posed a threat to the control and elimination of malaria. Several molecular markers were confirmed to be associated with the antimalarial drug resistance, such as pfcrt, pfmdr1, pfdhfr, pfdhps, and K13. This study evaluated the drug resistance of the 180 imported Plasmodium falciparum isolates from Angola via nested PCR using Sanger sequencing. The prevalences of pfcrt C72V73M74N75K76, pfmdr1 N86Y184S1034N1042D1246, pfdhfr A16N51C59S108D139I164, and pfdhps S436A437A476K540A581 were 69.4%, 59.9%, 1.3% and 6.3%, respectively. Three nonsynonymous (A578S, M579I, and Q613E) and one synonymous (R471R) mutation of K13 were found, the prevalences of which were 2.5% and 1.3%, respectively. The single nucleotide polymorphisms (SNPs) in pfcrt, pfmdr1, pfdhfr, and pfdhps were generally shown as multiple mutations. The mutant prevalence of pfcrt reduced gradually, but pfdhfr and pfdhps still showed high mutant prevalence, while pfmdr1 was relatively low. The mutation of the K13 gene was rare. Molecular surveillance of artemisinin (ART) resistance will be used as a tool to evaluate the real-time efficacy of the artemisinin-based combination therapies (ACTs) and the ART resistance situation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Monday Tola ◽  
Olumide Ajibola ◽  
Emmanuel Taiwo Idowu ◽  
Olusesan Omidiji ◽  
Samson Taiwo Awolola ◽  
...  

Abstract Objective Nigeria bears 25% of global malaria burden despite concerted efforts towards its control and elimination. The emergence of drug resistance to first line drugs, artemisinin combination therapies (ACTs), indicates an urgent need for continuous molecular surveillance of drug resistance especially in high burden countries where drug interventions are heavily relied on. This study describes mutations in Plasmodium falciparum genes associated with drug resistance in malaria; Pfk13, Pfmdr1, PfATPase6 and Pfcrt in isolates obtained from 83 symptomatic malaria patients collected in August 2014, aged 1–61 years old from South-west Nigeria. Results Two Pfmdr1, N86 and Y184 variants were present at a prevalence of 56% and 13.25% of isolates respectively. There was one synonymous (S679S) and two non-synonymous (M699V, S769M) mutations in the PATPase6 gene, while Pfcrt genotype (CVIET), had a prevalence of 45%. The Pfk13 C580Y mutant allele was suspected by allelic discrimination in two samples with mixed genotypes although this could not be validated with independent isolation or additional methods. Our findings call for robust molecular surveillance of antimalarial drug resistance markers in west Africa especially with increased use of antimalarial drugs as prophylaxis for Covid-19.


2013 ◽  
Vol 12 (1) ◽  
pp. 426 ◽  
Author(s):  
Maha A ElBadry ◽  
Alexandre Existe ◽  
Yves S Victor ◽  
Gladys Memnon ◽  
Mark Fukuda ◽  
...  

Acta Tropica ◽  
2016 ◽  
Vol 157 ◽  
pp. 158-161 ◽  
Author(s):  
Michela Menegon ◽  
Abduselam M. Nurahmed ◽  
Albadawi A. Talha ◽  
Bakri Y.M. Nour ◽  
Carlo Severini

Sign in / Sign up

Export Citation Format

Share Document