combination therapies
Recently Published Documents


TOTAL DOCUMENTS

1569
(FIVE YEARS 590)

H-INDEX

58
(FIVE YEARS 15)

2022 ◽  
Vol 16 ◽  
pp. 101332
Author(s):  
Shengqin Su ◽  
Gagan Chhabra ◽  
Chandra K. Singh ◽  
Mary A. Ndiaye ◽  
Nihal Ahmad

Author(s):  
Inna Serganova ◽  
Sanjukta Chakraborty ◽  
Samuel Yamshon ◽  
Yusuke Isshiki ◽  
Ryan Bucktrout ◽  
...  

B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Hossein Mazaherpour ◽  
Masoomeh Sofian ◽  
Elham Farahani ◽  
Alireza Abdi ◽  
Sakine Mazaherpour ◽  
...  

Several therapeutic regimens for COVID-19 have been studied, such as combination antiviral therapies. We aimed to compare outcome of two types of combination therapies atazanavir/ritonavir (ATV/r) or lopinavir/ritonavir (LPV/r) plus hydroxychloroquine among COVID-19 patients. 108 patients with moderate and severe forms of COVID-19 were divided into two groups (each group 54 patients). One group received ATV/r plus hydroxychloroquine, and the other group received hydroxychloroquine plus LPV/r. Then, both groups were evaluated and compared for clinical symptoms, recovery rates, and complications of treatment regimens. Our findings showed a significant increase in bilirubin in ATV/r-receiving group compared to LPV/r receivers. There was also a significant increase in arrhythmias in the LPV/r group compared to the ATV/r group during treatment. Other findings including length of hospital stay, outcome, and treatment complications were not statistically significant. There is no significant difference between protease inhibitor drugs including ATV/r and LPV/r in the treatment of COVID-19 regarding clinical outcomes. However, some side effects such as hyperbilirubinemia and arrhythmia were significantly different by application of atazanavir or lopinavir.


2022 ◽  
Vol 11 ◽  
Author(s):  
Giulia Ciotti ◽  
Giovanni Marconi ◽  
Giovanni Martinelli

Allogeneic stem cell transplantation still represents the best curative option for most patients with acute myeloid leukemia, but relapse is still dramatically high. Due to their immunologic activity and safety profile, hypomethylating agents (HMAs) represent an interesting backbone for combination therapies. This review reports mechanism of action, safety, and efficacy data on combination strategies based on HMAs in the setting of post-allogeneic stem cell transplant relapse. Several studies highlighted how HMAs and donor lymphocyte infusion (DLI) combination may be advantageous. The combination strategy of HMA with venetoclax, possibly in association with DLI, is showing excellent results in terms of response rate, including molecular responses. Lenalidomide, despite its well-known high rates of severe graft-versus-host disease in post-transplant settings, is showing an acceptable safety profile in association with HMAs with a competitive response rate. Regarding FLT3 internal tandem duplication (ITD) mutant AML, tyrosine kinase inhibitors and particularly sorafenib have promising results as monotherapy and in combination with HMAs. Conversely, combination strategies with gemtuzumab ozogamicin or immune checkpoint inhibitors did not show competitive response rates and seem to be currently less attractive strategies. Associations with histone deacetylase inhibitors and isocitrate dehydrogenase 1 and 2 (IDH1/2) inhibitors represent new possible strategies that need to be better investigated.


Author(s):  
Lilan Sun ◽  
Lang Sun ◽  
Xue Li ◽  
Xinxin Hu ◽  
Xiukun Wang ◽  
...  

The increasing incidence of tigecycline resistance undoubtedly constitutes a serious threat to global public health. The combination therapies had become the indispensable strategy against this threat. Herein, 11 clinical tigecycline-resistant Klebsiella pneumoniae which mainly has mutations in ramR, acrR, or macB were collected for tigecycline adjuvant screening. Interestingly, ML-7 hydrochloride (ML-7) dramatically potentiated tigecycline activity. We further picked up five analogs of ML-7 and evaluated their synergistic activities with tigecycline by using checkerboard assay. The results revealed that ML-7 showed certain synergy with tigecycline, while other analogs exerted attenuated synergistic effects among tigecycline-resistant isolates. Thus, ML-7 was selected for further investigation. The results from growth curves showed that ML-7 combined with tigecycline could completely inhibit the growth of bacteria, and the time-kill analysis revealed that the combination exhibited synergistic bactericidal activities for tigecycline-resistant isolates during 24 h. The ethidium bromide (EtBr) efflux assay demonstrated that ML-7 could inhibit the functions of efflux pump. Besides, ML-7 disrupted the proton motive force (PMF) via increasing ΔpH, which in turn lead to the inhibition of the functions of efflux pump, reduction of intracellular ATP levels, as well as accumulation of ROS. All of which promoted the death of bacteria. And further transcriptomic analysis revealed that genes related to the mechanism of ML-7 mainly enriched in ABC transporters. Taken together, these results revealed the potential of ML-7 as a novel tigecycline adjuvant to circumvent tigecycline-resistant Klebsiella pneumoniae.


Author(s):  
Shengliang Zhang ◽  
Lindsey Carlsen ◽  
Liz Hernandez Borrero ◽  
Attila A. Seyhan ◽  
Xiaobing Tian ◽  
...  

TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli and upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. P53 is the most frequently mutated gene in tumors with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) which promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for 1) boosting p53 activity in cancer, 2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, 3) targeting p53 in immunotherapy, and 4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document