parasite biology
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 44)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 16 (1) ◽  
pp. e0009889
Author(s):  
Shaoyun Cheng ◽  
Bingkuan Zhu ◽  
Fang Luo ◽  
Xiying Lin ◽  
Chengsong Sun ◽  
...  

Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.


Author(s):  
Kleber Simônio Parreira ◽  
Pedro Scarpelli ◽  
Wânia Rezende Lima ◽  
R. S Garcia

Abstract: In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mariela Luján Tomazic ◽  
Virginia Marugan-Hernandez ◽  
Anabel Elisa Rodriguez

Parasites of the phylum Apicomplexa are the causative agents of important diseases such as malaria, toxoplasmosis or cryptosporidiosis in humans, and babesiosis and coccidiosis in animals. Whereas the first human recombinant vaccine against malaria has been approved and recently recommended for wide administration by the WHO, most other zoonotic parasitic diseases lack of appropriate immunoprophylaxis. Sequencing technologies, bioinformatics, and statistics, have opened the “omics” era into apicomplexan parasites, which has led to the development of systems biology, a recent field that can significantly contribute to more rational design for new vaccines. The discovery of novel antigens by classical approaches is slow and limited to very few antigens identified and analyzed by each study. High throughput approaches based on the expansion of the “omics”, mainly genomics and transcriptomics have facilitated the functional annotation of the genome for many of these parasites, improving significantly the understanding of the parasite biology, interactions with the host, as well as virulence and host immune response. Developments in genetic manipulation in apicomplexan parasites have also contributed to the discovery of new potential vaccine targets. The present minireview does a comprehensive summary of advances in “omics”, CRISPR/Cas9 technologies, and in systems biology approaches applied to apicomplexan parasites of economic and zoonotic importance, highlighting their potential of the holistic view in vaccine development.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Albert E. Zhou ◽  
Zalak V. Shah ◽  
Katie R. Bradwell ◽  
James B. Munro ◽  
Andrea A. Berry ◽  
...  

Abstract Background RIFINs and STEVORs are variant surface antigens expressed by P. falciparum that play roles in severe malaria pathogenesis and immune evasion. These two highly diverse multigene families feature multiple paralogs, making their classification challenging using traditional bioinformatic methods. Results STRIDE (STevor and RIfin iDEntifier) is an HMM-based, command-line program that automates the identification and classification of RIFIN and STEVOR protein sequences in the malaria parasite Plasmodium falciparum. STRIDE is more sensitive in detecting RIFINs and STEVORs than available PFAM and TIGRFAM tools and reports RIFIN subtypes and the number of sequences with a FHEYDER amino acid motif, which has been associated with severe malaria pathogenesis. Conclusions STRIDE will be beneficial to malaria research groups analyzing genome sequences and transcripts of clinical field isolates, providing insight into parasite biology and virulence.


2022 ◽  
Vol 21 (1) ◽  
pp. 8-18
Author(s):  
Afzan Mat Yusof

The biology of Cryptosporidium has been studied increasingly since it was recognized as a pathogen of humans more than a century. Its recent recognition as a second leading cause of diarrhoea or cryptosporidiosis immunocompromised patients globally has led many researchers to study on this parasite. Many new technologies such as high-throughput omics and bioinformatics tools have been implemented to investigate this zoonotic parasite in a better approach. The aim of this review article is mainly to briefly describe recent applications of structural bioinformatics in order to reveal the potentiality of a suitable therapeutic target in Cryptosporidium. This review was written based on the search of cited publications in SCOPUS website with the combination of word ‘Cryptosporidium’ with other words like bioinformatics, protein structure, structural biology and homology modeling. The search results then were selected based on the relativeness of updated information needed to be prepared in this review. Several cited publications were used to elaborate the review accordingly despitelimitedreviewupdatesrelatedtoprotein bioinformation of thisparasite. As a conclusion, bioinformatics is a commonly known to be cutting-edge technology that has been recognised for its power to reveal the secret of parasite biology in silico including a neglected parasite, Cryptosporidium. Bangladesh Journal of Medical Science Vol. 21(1) 2022 Page : 8-18


2021 ◽  
Vol 15 (11) ◽  
pp. e0009981
Author(s):  
Thomas A. Gasan ◽  
Marije E. Kuipers ◽  
Grisial H. Roberts ◽  
Gilda Padalino ◽  
Josephine E. Forde-Thomas ◽  
...  

Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni—infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1’s role in shaping schistosome EV function and definitive host relationships.


Author(s):  
James Abugri

There is an overarching need to find alternative treatment options for malaria and this quest is more pressing in current times due to the morbidity and mortality data arising from most endemic countries and partially owing to the fact that the SARS-Cov-2 pandemic has diverted much public health attention. Additionally, the therapeutic options available for malaria has been severely threatened with the emergence of resistance to almost all existing drugs by the human malaria parasite. The Artemisinin Combination Therapies (ACTs) which hitherto have been the mainstay for malaria have encountered resistance in South East Asia, a notorious ground zero for the emergence of antimalarial drug resistance. This review analyses few key druggable targets of the parasite and the potential to leverage strategic inhibitors to mitigate the scourge of malaria by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Furthermore, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage such findings for antimalarial drug production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silvia Stefania Longoni ◽  
Natalia Tiberti ◽  
Zeno Bisoffi ◽  
Chiara Piubelli

Following the SARS-CoV-2 pandemic, several clinical trials have been approved for the investigation of the possible use of mAbs, supporting the potential of this technology as a therapeutic approach for infectious diseases. The first monoclonal antibody (mAb), Muromonab CD3, was introduced for the prevention of kidney transplant rejection more than 30 years ago; since then more than 100 mAbs have been approved for therapeutic purposes. Nonetheless, only four mAbs are currently employed for infectious diseases: Palivizumab, for the prevention of respiratory syncytial virus (RSV) infections, Raxibacumab and Obiltoxaximab, for the prophylaxis and treatment against anthrax toxin and Bezlotoxumab, for the prevention of Clostridium difficile recurrence. Protozoan infections are often neglected diseases for which effective and safe chemotherapies are generally missing. In this context, drug resistance and drug toxicity are two crucial problems. The recent advances in bioinformatics, parasite genomics, and biochemistry methodologies are contributing to better understand parasite biology, which is essential to guide the development of new therapies. In this review, we present the efforts that are being made in the evaluation of mAbs for the prevention or treatment of leishmaniasis, Chagas disease, malaria, and toxoplasmosis. Particular emphasis will be placed on the potential strengths and weaknesses of biological treatments in the control of these protozoan diseases that are still affecting hundreds of thousands of people worldwide.


BioTechniques ◽  
2021 ◽  
Author(s):  
Damien M O'Halloran

Parasitic nematodes represent a significant threat to human health, causing diseases of major socioeconomic importance worldwide. Central to controlling infections of parasitic nematodes is a more detailed molecular picture of host specificity, parasite activation and immune suppression. CRISPR technology holds huge potential for researchers in the field of parasitic nematology, as it provides a powerful genetic tool to dissect questions in parasite biology. To expedite the development of CRISPR technology in parasitic nematodes, software is required to facilitate the design of effective and specific sgRNA sequences. Here, the author introduces CRISPR-PN2, a comprehensive web-based platform that provides flexible use control over the automated design of specific gRNA sequences for CRISPR experiments in parasitic nematodes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rachel L. Smith ◽  
Amelia Goddard ◽  
Arun Boddapati ◽  
Steven Brooks ◽  
Johan P. Schoeman ◽  
...  

Abstract Background Babesia rossi is a leading cause of morbidity and mortality among the canine population of sub-Saharan Africa, but pathogenesis remains poorly understood. Previous studies of B. rossi infection were derived from clinical cases, in which neither the onset of infection nor the infectious inoculum was known. Here, we performed controlled B. rossi inoculations in canines and evaluated disease progression through clinical tests and whole blood transcriptomic profiling. Results Two subjects were administered a low inoculum (104 parasites) while three received a high (108 parasites). Subjects were monitored for 8 consecutive days; anti-parasite treatment with diminazene aceturate was administered on day 4. Blood was drawn prior to inoculation as well as every experimental day for assessment of clinical parameters and transcriptomic profiles. The model recapitulated natural disease manifestations including anemia, acidosis, inflammation and behavioral changes. Rate of disease onset and clinical severity were proportional to the inoculum. To analyze the temporal dynamics of the transcriptomic host response, we sequenced mRNA extracted from whole blood drawn on days 0, 1, 3, 4, 6, and 8. Differential gene expression, hierarchical clustering, and pathway enrichment analyses identified genes and pathways involved in response to hemolysis, metabolic changes, and several arms of the immune response including innate immunity, adaptive immunity, and response to viral infection. Conclusions This work comprehensively characterizes the clinical and transcriptomic progression of B. rossi infection in canines, thus establishing a large mammalian model of severe hemoprotozoal disease to facilitate the study of host-parasite biology and in which to test novel anti-disease therapeutics. The knowledge gained from the study of B. rossi in canines will not only improve our understanding of this emerging infectious disease threat in domestic dogs, but also provide insight into the pathobiology of human diseases caused by Babesia and Plasmodium species.


Sign in / Sign up

Export Citation Format

Share Document