scholarly journals Minimally invasive lateral transpsoas approach for lumbar corpectomy and stabilization

2019 ◽  
Vol 10 ◽  
pp. 153
Author(s):  
Umesh Srikantha ◽  
Yadhu Kasetti Lokanath ◽  
Akshay Hari ◽  
S. Nirmala ◽  
Ravi Gopal Varma

Background: Here, we present our experience with the minimally invasive (MI) transpsoas approach for lumbar corpectomy and stabilization. Transpsoas approach accesses the lumbar spine and includes both the direct lateral interbody fusion and extreme lateral interbody fusion techniques. Both procedures utilize a tubular retractor system which facilitates adequate retraction and direct visualization of the target, while supposedly reducing soft tissue trauma. Case Description: We evaluated two patients, one with a traumatic L2 wedge compression fracture and the other with an L3 pathological compression fracture due to multiple myeloma. Both patients underwent MI transpsoas lumbar corpectomy, anterior column reconstruction with an expandable cage, and posterior pedicle screw instrumentation to correct a kyphotic deformity. Both patients were mobilized on the 1st postoperative day and experienced significant postoperative pain relief. Conclusion: In two cases involving L2 and L3 compression fractures, MI transpsoas lumbar corpectomy was safely performed, with reduced perioperative and postoperative morbidity. Here, the transpsoas approach also allowed for early mobilization, adequate postoperative biomechanical stability, and resulted in immediate good outcomes.

2009 ◽  
Vol 10 (2) ◽  
pp. 139-144 ◽  
Author(s):  
David M. Benglis ◽  
Steve Vanni ◽  
Allan D. Levi

Object Minimally invasive anterolateral approaches to the lumbar spine are options for the treatment of a number of adult degenerative spinal disorders. Nerve injuries during these surgeries, although rare, can be devastating complications. With an increasing number of spine surgeons utilizing minimal access retroperitoneal surgery to treat lumbar problems, the frequency of complications associated with this approach will likely increase. The authors sought to better understand the location of the lumbar contribution of the lumbosacral plexus relative to the disc spaces encountered when performing the minimally invasive transpsoas approach, also known as extreme lateral interbody fusion or direct lateral interbody fusion. Methods Three fresh cadavers were placed lateral, and a total of 3 dissections of the lumbar contribution of the lumbosacral plexus were performed. Radiopaque soldering wire was then laid along the anterior margin of the nerve fibers and the exiting femoral nerve. Markers were placed at the disc spaces and lateral fluoroscopy was used to measure the location of the lumbar plexus along each respective disc space in the lumbar spine (L1–2, L2–3, L3–4, and L4–5). Results The lumbosacral plexus was found lying within the substance of the psoas muscle between the junction of the transverse process and vertebral body and exited along the medial edge of the psoas distally. The lumbosacral plexus was most dorsally positioned at the posterior endplate of L1–2. A general trend of progressive ventral migration of the plexus on the disc space was noted at L2–3, L3–4, and L4–5. Average ratios were calculated at each level (location of the plexus from the dorsal endplate to total disc length) and were 0 (L1–2), 0.11 (L2–3), 0.18 (L3–4), and 0.28 (L4–5). Conclusions This anatomical study suggests that positioning the dilator and/or retractor in a posterior position of the disc space may result in nerve injury to the lumbosacral plexus, especially at the L4–5 level. The risk of injuring inherent nerve branches directed to the psoas muscle as well as injury to the genitofemoral nerve do still exist.


2018 ◽  
Vol 4 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Kingsley R. Chin ◽  
Fabio J. R. Pencle ◽  
Morgan D. Brown ◽  
Jason A. Seale

SAS Journal ◽  
2010 ◽  
Vol 4 (4) ◽  
pp. 115-121 ◽  
Author(s):  
Jonathan E. Webb ◽  
Gilad J. Regev ◽  
Steven R. Garfin ◽  
Choll W. Kim

2018 ◽  
Vol 16 (4) ◽  
pp. E121-E121 ◽  
Author(s):  
Corey T Walker ◽  
Jakub Godzik ◽  
David S Xu ◽  
Nicholas Theodore ◽  
Juan S Uribe ◽  
...  

Abstract Lateral interbody fusion has distinct advantages over traditional posterior approaches. When adjunctive percutaneous pedicle screw fixation is required, placement from the lateral decubitus position theoretically increases safety and improves operative efficiency by obviating the need for repositioning. However, safe cannulation of the contralateral, down-side pedicles remains technically challenging and often prohibitive. In this video, we present the case of a 59-yr-old man with refractory back pain and bilateral lower extremity radiculopathy that was worse on the left than right side. The patient provided written informed consent before undergoing treatment. We performed minimally invasive single-position lateral interbody fusion with robotic (ExcelsiusGPS, Globus Medical Inc, Audubon, Pennsylvania) bilateral percutaneous pedicle screw fixation for the treatment of asymmetric disc degeneration, dynamic instability, and left paracentral disc herniation with corresponding stenosis at the L3-4 level. A left-sided minimally invasive transpsoas lateral interbody graft was placed with fluoroscopic guidance. Without changing the position of the patient or breaking the sterile field, an intraoperative cone-beam computed tomography image was obtained for navigational screw placement with stereotactic trackers in the iliac spine. Screw trajectories were planned using the robotic navigation software and were placed percutaneously in the bilateral L3 and L4 pedicles using the robotic arm. Concomitant lateral fluoroscopy may be used if desired to ensure the fidelity of the robotic guidance. The patient recovered well postoperatively and was discharged home within 36 h, without complication. Single-position lateral interbody fusion and percutaneous pedicle screw fixation can be accomplished using robotic-assisted navigation and pedicle screw placement. Used with permission from Barrow Neurological Institute.


Medicine ◽  
2018 ◽  
Vol 97 (48) ◽  
pp. e13484 ◽  
Author(s):  
Jianzhong Jiang ◽  
Fengping Gan ◽  
Haitao Tan ◽  
Zhaolin Xie ◽  
Xiang Luo ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Luis Marchi ◽  
Nitamar Abdala ◽  
Leonardo Oliveira ◽  
Rodrigo Amaral ◽  
Etevaldo Coutinho ◽  
...  

The purpose of this paper was to investigate the stand-alone lateral interbody fusion as a minimally invasive option for the treatment of low-grade degenerative spondylolisthesis with a minimum 24-month followup. Prospective nonrandomized observational single-center study. 52 consecutive patients (67.6±10 y/o; 73.1% female;27.4±3.4 BMI) with single-level grade I/II single-level degenerative spondylolisthesis without significant spine instability were included. Fusion procedures were performed as retroperitoneal lateral transpsoas interbody fusions without screw supplementation. The procedures were performed in average 73.2 minutes and with less than 50cc blood loss. VAS and Oswestry scores showed lasting improvements in clinical outcomes (60% and 54.5% change, resp.). The vertebral slippage was reduced in 90.4% of cases from mean values of 15.1% preoperatively to 7.4% at 6-week followup (P<0.001) and was maintained through 24 months (7.1%,P<0.001). Segmental lordosis (P<0.001) and disc height (P<0.001) were improved in postop evaluations. Cage subsidence occurred in 9/52 cases (17%) and 7/52 cases (13%) spine levels needed revision surgery. At the 24-month evaluation, solid fusion was observed in 86.5% of the levels treated. The minimally invasive lateral approach has been shown to be a safe and reproducible technique to treat low-grade degenerative spondylolisthesis.


Sign in / Sign up

Export Citation Format

Share Document