scholarly journals HYBRID-SURROGATE-MODEL-BASED EFFICIENT GLOBAL OPTIMIZATION FOR HIGH-DIMENSIONAL ANTENNA DESIGN

2012 ◽  
Vol 124 ◽  
pp. 85-100 ◽  
Author(s):  
Ling-Lu Chen ◽  
Cheng Liao ◽  
Wenbin Lin ◽  
Lei Chang ◽  
Xuan-Ming Zhong
2017 ◽  
Vol 50 (6) ◽  
pp. 1016-1040 ◽  
Author(s):  
Atthaphon Ariyarit ◽  
Masahiko Sugiura ◽  
Yasutada Tanabe ◽  
Masahiro Kanazaki

2016 ◽  
Vol 4 (2) ◽  
pp. 86-97 ◽  
Author(s):  
Bo Liu ◽  
Slawomir Koziel ◽  
Nazar Ali

Abstract Efficiency improvement is of great significance for simulation-driven antenna design optimization methods based on evolutionary algorithms (EAs). The two main efficiency enhancement methods exploit data-driven surrogate models and/or multi-fidelity simulation models to assist EAs. However, optimization methods based on the latter either need ad hoc low-fidelity model setup or have difficulties in handling problems with more than a few design variables, which is a main barrier for industrial applications. To address this issue, a generalized three stage multi-fidelity-simulation-model assisted antenna design optimization framework is proposed in this paper. The main ideas include introduction of a novel data mining stage handling the discrepancy between simulation models of different fidelities, and a surrogate-model-assisted combined global and local search stage for efficient high-fidelity simulation model-based optimization. This framework is then applied to SADEA, which is a state-of-the-art surrogate-model-assisted antenna design optimization method, constructing SADEA-II. Experimental results indicate that SADEA-II successfully handles various discrepancy between simulation models and considerably outperforms SADEA in terms of computational efficiency while ensuring improved design quality. Highlights An EFFICIENT antenna design global optimization method for problems requiring very expensive EM simulations. A new multi-fidelity surrogate-model-based optimization framework to perform RELIABLE efficient global optimization A data mining method to address distortions of EM models of different fidelities (bottleneck of multi-fidelity design).


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Zhen Hu ◽  
Xiaoping Du

Time-dependent reliability analysis requires the use of the extreme value of a response. The extreme value function is usually highly nonlinear, and traditional reliability methods, such as the first order reliability method (FORM), may produce large errors. The solution to this problem is using a surrogate model of the extreme response. The objective of this work is to improve the efficiency of building such a surrogate model. A mixed efficient global optimization (m-EGO) method is proposed. Different from the current EGO method, which draws samples of random variables and time independently, the m-EGO method draws samples for the two types of samples simultaneously. The m-EGO method employs the adaptive Kriging–Monte Carlo simulation (AK–MCS) so that high accuracy is also achieved. Then, Monte Carlo simulation (MCS) is applied to calculate the time-dependent reliability based on the surrogate model. Good accuracy and efficiency of the m-EGO method are demonstrated by three examples.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Stefanos Koullias ◽  
Dimitri N. Mavris

The design of unconventional systems requires early use of high-fidelity physics-based tools to search the design space for improved and potentially optimum designs. Current methods for incorporating these computationally expensive tools into early design for the purpose of reducing uncertainty are inadequate due to the limited computational resources that are available in early design. Furthermore, the lack of finite difference derivatives, unknown design space properties, and the possibility of code failures motivates the need for a robust and efficient global optimization (EGO) algorithm. A novel surrogate model-based global optimization algorithm capable of efficiently searching challenging design spaces for improved designs is presented. The algorithm, called fBcEGO for fully Bayesian constrained EGO, constructs a fully Bayesian Gaussian process (GP) model through a set of observations and then uses the model to make new observations in promising areas where improvements are likely to occur. This model remedies the inadequacies of likelihood-based approaches, which may provide an incomplete inference of the underlying function when function evaluations are expensive and therefore scarce. A challenge in the construction of the fully Bayesian GP model is the selection of the prior distribution placed on the model hyperparameters. Previous work employs static priors, which may not capture a sufficient number of interpretations of the data to make any useful inferences about the underlying function. An iterative method that dynamically assigns hyperparameter priors by exploiting the mechanics of Bayesian penalization is presented. fBcEGO is incorporated into a methodology that generates relatively few infeasible designs and provides large reductions in the objective function values of design problems. This new algorithm, upon implementation, was found to solve more nonlinearly constrained algebraic test problems to higher accuracies relative to the global minimum than other popular surrogate model-based global optimization algorithms and obtained the largest reduction in the takeoff gross weight objective function for the case study of a notional 70-passenger regional jet when compared with competing design methods.


2015 ◽  
Vol 29 (4) ◽  
pp. 1421-1427 ◽  
Author(s):  
Su-gil Cho ◽  
Junyong Jang ◽  
Jihoon Kim ◽  
Minuk Lee ◽  
Jong-Su Choi ◽  
...  

Author(s):  
Zhen Hu ◽  
Xiaoping Du

If a limit-state function involves time, the associated reliability is defined within a period of time. The extreme value of the limit-state function is needed to calculate the time-dependent reliability, and the extreme value is usually highly nonlinear with respect to random input variables and may follow a multimodal distribution. For this reason, a surrogate model of the extreme response along with Monte Carlo simulation is usually employed. The objective of this work is to develop a new method, called the Efficient Global Optimization Reliability Analysis (EGORA), to efficiently build the surrogate model. EGORA is based on the Efficient Global Optimization (EGO) method. Different from the current method that generates training points for random variables and time independently, EGORA draws training points for the two types of input variables simultaneously and therefore accounts for their interaction effects. The other improvement is that EGORA only focuses on high accuracy at or near the limit state. With the two improvements, the new method can effectively reduce the number of training points. Once the surrogate model of the extreme response is available, Monte Carlo simulation is applied to calculate the time-dependent reliability. Good accuracy and efficiency of EGORA are demonstrated by three examples.


Sign in / Sign up

Export Citation Format

Share Document