weighting method
Recently Published Documents


TOTAL DOCUMENTS

1147
(FIVE YEARS 522)

H-INDEX

28
(FIVE YEARS 8)

2022 ◽  
Vol 9 ◽  
Author(s):  
Feng Cai ◽  
Lingling Yang ◽  
Yuan Yuan ◽  
Farhad Taghizadeh-Hesary

Coal quality rating can help reduce greenhouse gas emissions, solving the global warming problem. It becomes more important as the carbon neutrality by the mid-21st century agreement is accepted by 195 countries, including China. In this paper, an improved fuzzy comprehensive evaluation method is introduced for coal quality rating. The data used in this work are of the Hostolgoi coalfield of the Xinjiang Province of China. Six industrial analysis indicators are determined as evaluation factors by taking the coal samples of different coal seam depths in the mining area. The super-standard multiple methods and the double-weight super-standard weighting method are combined to form a comprehensive weight. The results show that most of the coal samples of this coal mine are at grades I–II, and the overall coal is with good-quality stability. The evaluation results can improve the coal utilization efficiency and provide scientific guidance for evaluating and exploiting coal resources in coal geological exploration.


2022 ◽  
pp. 1-15
Author(s):  
E. Ammar ◽  
A. Al-Asfar

In real conditions, the parameters of multi-objective nonlinear programming (MONLP) problem models can’t be determined exactly. Hence in this paper, we concerned with studying the uncertainty of MONLP problems. We propose algorithms to solve rough and fully-rough-interval multi-objective nonlinear programming (RIMONLP and FRIMONLP) problems, to determine optimal rough solutions value and rough decision variables, where all coefficients and decision variables in the objective functions and constraints are rough intervals (RIs). For the RIMONLP and FRIMONLP problems solving methodology are presented using the weighting method and slice-sum method with Kuhn-Tucker conditions, We will structure two nonlinear programming (NLP) problems. In the first one of this NLP problem, all of its variables and coefficients are the lower approximation (LAI) it’s RIs. The second NLP problems are upper approximation intervals (UAI) of RIs. Subsequently, both NLP problems are sliced into two crisp nonlinear problems. NLP is utilized because numerous real systems are inherently nonlinear. Also, rough intervals are so important for dealing with uncertainty and inaccurate data in decision-making (DM) problems. The suggested algorithms enable us to the optimal solutions in the largest range of possible solution. Finally, Illustrative examples of the results are given.


2022 ◽  
Author(s):  
Ye Zhao ◽  
Xiang zhang ◽  
feng xiong ◽  
Shuying Liu ◽  
yao wang ◽  
...  

Abstract High-density precipitation data is always desired to capture the heterogeneity of precipitation to accurately describe the components of the hydrological cycle. However, equipping and maintaining a high-density rain gauge network involves high costs, and the existing rain gauges are often unable to meet the density requirements. The objective of this study is to provide a new method to analyze the spatiotemporal variability of the precipitation field and to solve the problem of insufficient site density. To this end, the Proper Orthogonal Decomposition (POD) method is proposed, which can analyze the spatial distribution characteristics of rainfall fields to solve data shortages. To demonstrate the feasibility and advantages of the proposed methodology, four districts and counties (Hongshan District, Jianli County, Sui County, and Xuanen County) in Hubei province in China were selected as case studies. The principal results are as follows. (1) The proposed method is effective in analyzing the spatiotemporal variability of the rainfall field to reconstruct rainfall data in ungauged basins. (2) Compared with the commonly used Thiessen Polygon method, the Inverse Distance Weighting method, and the Kriging method, POD is more accurate and convenient, and the root mean squared error is reduced from 3.22, 1.83, 2.19 to 2.09; the correlation coefficients are improved from 0.60, 0.85, 0.79 to 0.89, respectively. (3) The POD method performs particularly well in simulating the peak value and the peak time and can offer a meaningful reference for analyzing the spatial distribution of rainfall.


2022 ◽  
pp. 1-18
Author(s):  
Luting Yang ◽  
Yan Li

Online shopping has gradually become an important way of consumption, and consumers are paying more and more attention to negative reviews. In order to avoid the massive amount of negative review information leading to loss of useful information, this paper proposes a method for evaluating the usefulness of negative online reviews. Firstly, the method constructs an evaluation index system for the usefulness of negative online reviews from three aspects: the form feature, text feature, and reviewer feature of negative reviews, and uses a combination weighting method based on fuzzy analytic hierarchy process (FAHP) and entropy method to determine the weight of each index. Secondly, the usefulness ranking results of negative online reviews are obtained through the improved TOPSIS method based on the combined weighting method. Finally, the empirical analysis of the proposed model is carried out by crawling the negative online reviews of JD.com Fresh Food platform, and the improved model is compared with the traditional TOPSIS model, which proves the feasibility and effectiveness of the model.


2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Yahui Guo ◽  
Shouzhi Chen ◽  
Yongshuo H. Fu ◽  
Yi Xiao ◽  
Wenxiang Wu ◽  
...  

Accurately identifying the phenology of summer maize is crucial for both cultivar breeding and fertilizer controlling in precision agriculture. In this study, daily RGB images covering the entire growth of summer maize were collected using phenocams at sites in Shangqiu (2018, 2019 and 2020) and Nanpi (2020) in China. Four phenological dates, including six leaves, booting, heading and maturity of summer maize, were pre-defined and extracted from the phenocam-based images. The spectral indices, textural indices and integrated spectral and textural indices were calculated using the improved adaptive feature-weighting method. The double logistic function, harmonic analysis of time series, Savitzky–Golay and spline interpolation were applied to filter these indices and pre-defined phenology was identified and compared with the ground observations. The results show that the DLF achieved the highest accuracy, with the coefficient of determination (R2) and the root-mean-square error (RMSE) being 0.86 and 9.32 days, respectively. The new index performed better than the single usage of spectral and textural indices, of which the R2 and RMSE were 0.92 and 9.38 days, respectively. The phenological extraction using the new index and double logistic function based on the PhenoCam data was effective and convenient, obtaining high accuracy. Therefore, it is recommended the adoption of the new index by integrating the spectral and textural indices for extracting maize phenology using PhenoCam data.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Xichun Luo ◽  
Honghao Zhao ◽  
Yan Chen

Due to the marked increase in the prevalence of overweight and obesity worldwide and an environment leading to a series of chronic diseases, physical exercise is an important way to prevent chronic diseases. Additionally, a good exercise smart bracelet can bring convenience to physical exercise. Quick and accurate evaluation of smart sports bracelets has become a hot topic and draws attention from both academic researchers and public society. In the literature, the analytic hierarchy process (AHP) and entropy weight method (EWM) were used to obtain the weights from both subjective and objective perspectives, which were integrated by the comprehensive weighting method, and furthermore the performance of sports smart bracelet was evaluated through fuzzy comprehensive evaluation. Also, to avoid complex weight calculations caused by the comprehensive weighting method, machine learning methods are used to model the structure and contribute to the comprehensive evaluation process. However, few studies have investigated all previous elements in the comprehensive evaluation process. In this study, we consider all previous parts when evaluating smart sports bracelets. In particular, we use the sparrow search algorithm (SSA) to optimize the backpropagation (BP) neural network for constructing the comprehensive score prediction model of the sports smart bracelet. Results show that the sparrow search algorithm-optimized backpropagation (SSA-BP) neural network model has good predictive ability and can quickly obtain evaluation results on the premise of effectively ensuring the accuracy of the evaluation results.


2022 ◽  
Vol 355 ◽  
pp. 02063
Author(s):  
Yong Xu ◽  
Wenlin Xu ◽  
Lingqiao Zhang ◽  
Huiwen Yang ◽  
Yi Jiang

Smart energy station plays the pivotal role of power grid in energy collection, transmission, conversion and utilization due to its characteristics of multi-station integration. In order to accurately evaluate the energy efficiency level of smart energy stations and achieve economic and efficient electricity consumption, an energy efficiency evaluation system suitable for the form of three stations in one is proposed. Firstly, the influencing factors of energy consumption of each station are analyzed, the index system of smart energy stations is established, and the calculation method of each index is given. Secondly, based on the index system of energy efficiency, through the combination of the subjective weighting method and entropy evaluation method to determine the index weight, combined with the score and weight of energy efficiency for smart energy efficiency assessment, based on three different running environment of wisdom energy station simulation comparison, get the efficiency score, verify the feasibility of the assessment method, and gives specific suggestions on saving energy consumption.


2021 ◽  
Vol 14 (1) ◽  
pp. 175
Author(s):  
Zhihui Wang ◽  
Zepeng Cui ◽  
Tian He ◽  
Qiuhong Tang ◽  
Peiqing Xiao ◽  
...  

Climate variation and underlying surface dynamics have caused a significant change in the trend of evapotranspiration (ET) in the Yellow River Basin (YRB) over the last two decades. Combined with the measured rainfall, runoff and gravity recovery and climate experiment (GRACE) product, five global ET products were firstly merged using a linear weighting method. Linear slope, “two-step” multiple regression, partial differential, and residual methods were then employed to explore the quantitative impacts of precipitation (PCPN), temperature (Temp), sunshine duration (SD), vapor pressure deficit (VPD), wind speed (WS), leaf area index (LAI), and the residual factors (e.g., microtopography changes, irrigation, etc.) on the ET trend in the YRB. The results show that: (1) The ET estimates were improved by merging five global ET products using the linear weighting method. The sensitivities of climatic factors and LAI on the ET trend can be separately calculated using proposed “two-step” statistical regression method; (2) the overall ET trend in the entire study area during 2000–2018 was 3.82 mm/yr, and the highest ET trend was observed in the Toudaoguai-Longmen subregion. ET trend was dominantly driven by vegetation greening, with an impact of 2.47 mm/yr and a relative impact rate of 51.16%. The results indicated that the relative impact rate of the residual factors (e.g., microtopography, irrigation, etc.) on the ET trend is up to 28.17%. The PCPN and VPD had increasing roles on the ET trend, with impacts of 0.45 mm/yr and 0.05 mm/yr, respectively, whereas the Temp, SD, and WS had decreasing impacts of –0.19 mm/yr, –0.15 mm/yr, and –0.17 mm/yr, respectively. (3) The spatial pattern of impact of specific influencing factor on the ET trend was determined by the spatial pattern of change trend slope of this factor and sensitivity of ET to this factor. ET trends of the source area and the Qingtongxia–Toudaoguai were dominated by the climatic factors, while the residual factors dominated the ET trend in the Tangnaihai–Qingtongxia area. The vegetation restoration was the dominant factor causing the increase in the ET in the middle reaches of the YRB, and the impact rates of the LAI were ranked as follows: Yanhe Rive > Wudinghe River > Fenhe River > Jinghe River > Beiluohe River > Qinhe River > Kuyehe River > Yiluohe River.


2021 ◽  
Vol 10 (3) ◽  
pp. 116-125
Author(s):  
Bedizatulo Laia ◽  
Bosker Sinaga

The system supports the company's performance appraisal using the AHP (Case Study: PT. Andhy Putra) method, one of which is to find, select, assess and determine the best employees every year to match the abilities and assessment criteria applied so far. PT. Andhy Putra while assessing employee performance, especially in CME and OSP, still experiences shortcomings and weaknesses in determining qualified employees. This employee performance system has problems in assessing the performance appraisal data that is less accurate, which is carried out on a paper-based basis and requires less efficient time and large costs. For that, we need a decision support system in helping PT. Andhy Putra to conduct a performance appraisal every year. The method used in this employee assessment is AHP (Analytical Hierarchy Process), which is often also known as the weighting method. The process hierarchy analytical method is one of the methods used to find weight values ​​based on existing criteria and helps facilitate the ranking of alternatives based on the distance between the positive ideal solution and the negative ideal solution. There are 5 (five) criteria as a tool to assess employee performance, namely commitment to the company, desire for achievement, cooperation, leadership and discipline accompanied by the results of the implementation of this process hierarchy method in the form of ranking the alternatives used. This decision support system is built using the PHP programming language and MySQL database


Sign in / Sign up

Export Citation Format

Share Document