scholarly journals SADEA-II: A generalized method for efficient global optimization of antenna design

2016 ◽  
Vol 4 (2) ◽  
pp. 86-97 ◽  
Author(s):  
Bo Liu ◽  
Slawomir Koziel ◽  
Nazar Ali

Abstract Efficiency improvement is of great significance for simulation-driven antenna design optimization methods based on evolutionary algorithms (EAs). The two main efficiency enhancement methods exploit data-driven surrogate models and/or multi-fidelity simulation models to assist EAs. However, optimization methods based on the latter either need ad hoc low-fidelity model setup or have difficulties in handling problems with more than a few design variables, which is a main barrier for industrial applications. To address this issue, a generalized three stage multi-fidelity-simulation-model assisted antenna design optimization framework is proposed in this paper. The main ideas include introduction of a novel data mining stage handling the discrepancy between simulation models of different fidelities, and a surrogate-model-assisted combined global and local search stage for efficient high-fidelity simulation model-based optimization. This framework is then applied to SADEA, which is a state-of-the-art surrogate-model-assisted antenna design optimization method, constructing SADEA-II. Experimental results indicate that SADEA-II successfully handles various discrepancy between simulation models and considerably outperforms SADEA in terms of computational efficiency while ensuring improved design quality. Highlights An EFFICIENT antenna design global optimization method for problems requiring very expensive EM simulations. A new multi-fidelity surrogate-model-based optimization framework to perform RELIABLE efficient global optimization A data mining method to address distortions of EM models of different fidelities (bottleneck of multi-fidelity design).

2020 ◽  
Author(s):  
Yongbeom Kwon ◽  
Juyong Lee

<div> <div> <div> <p>Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Yongbeom Kwon ◽  
Juyong Lee

Abstract Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods.


Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.


2012 ◽  
Vol 124 ◽  
pp. 85-100 ◽  
Author(s):  
Ling-Lu Chen ◽  
Cheng Liao ◽  
Wenbin Lin ◽  
Lei Chang ◽  
Xuan-Ming Zhong

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongbeom Kwon ◽  
Juyong Lee

AbstractHere, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods.


2018 ◽  
Vol 35 (1) ◽  
pp. 71-90 ◽  
Author(s):  
Xiwen Cai ◽  
Haobo Qiu ◽  
Liang Gao ◽  
Xiaoke Li ◽  
Xinyu Shao

Purpose This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization. Design/methodology/approach The method has fully utilized the information provided by different metamodels in the optimization process. It not only imparts the expected improvement criterion of kriging into other metamodels but also intelligently selects appropriate metamodeling techniques to guide the search direction, thus making the search process very efficient. Besides, the corresponding local search strategies are also put forward to further improve the optimizing efficiency. Findings To validate the method, it is tested by several numerical benchmark problems and applied in two engineering design optimization problems. Moreover, an overall comparison between the proposed method and several other typical global optimization methods has been made. Results show that the global optimization efficiency of the proposed method is higher than that of the other methods for most situations. Originality/value The proposed method sufficiently utilizes multiple metamodels in the optimizing process. Thus, good optimizing results are obtained, showing great applicability in engineering design optimization problems which involve costly simulations.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040115
Author(s):  
Neng Xiong ◽  
Yang Tao ◽  
Jun Lin ◽  
Xue-Qiang Liu

Robust design optimization has a great potential application in many engineering fields. In the conventional robust aerodynamics design optimization method, the main difficulty is expensive computational cost related to a large number of function evaluations for uncertainty quantification (UQ). To alleviate the expensive burden for UQ, two levels Kriging surrogate model was introduced. The first level is for the mean value and the second level is for the variances. Through the second level Kriging surrogate models, the method of Monte Carlo Simulation (MCS), which requires a huge number of function evaluations, can be effectively applied to the analysis of variance. Efficient Global Optimization algorithm (EGO) was employed to achieve the global optimized results. To validate the performance of the design method, both one-dimensional function and two-dimensional function were applied. Finally, robust aerodynamics design optimization was applied for a low-drag airfoil. The results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties to small manufacturing errors.


2020 ◽  
Author(s):  
Yongbeom Kwon ◽  
Juyong Lee

<div> <div> <div> <p>Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse molecules with desired properties efficiently without any training and a large molecular database. Compared with recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outperforms in terms of both the optimization of a given target property and the generation of a set of diverse and novel molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representation is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. We believe that our results shed light on new possibilities for advances in molecule optimization methods. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document