scholarly journals Increasing the interval of convergence for a generalized Newton's method of solving nonlinear equations

Author(s):  
А.Н. Громов

Рассмотрен подход к построению расширения промежутка сходимости ранее предложенного обобщения метода Ньютона для решения нелинейных уравнений одного переменного. Подход основан на использовании свойства ограниченности непрерывной функции, определенной на отрезке. Доказано, что для поиска действительных корней вещественнозначного многочлена с комплексными корнями предложенный подход дает итерации с нелокальной сходимостью. Результат обобщен на случай трансцендентных уравнений. An approach to the construction of an extended interval of convergence for a previously proposed generalization of Newton's method to solve nonlinear equations of one variable. This approach is based on the boundedness of a continuous function defined on a segment. It is proved that, for the search for the real roots of a real-valued polynomial with complex roots, the proposed approach provides iterations with nonlocal convergence. This result is generalized to the case transcendental equations.

2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rami Sihwail ◽  
Obadah Said Solaiman ◽  
Khairuddin Omar ◽  
Khairul Akram Zainol Ariffin ◽  
Mohammed Alswaitti ◽  
...  

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Avram Sidi

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form f(x)=0. In a recent work (A. Sidi, Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant method that uses only one evaluation of f(x) per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer k, this method generates a sequence {xn} of approximations to a real root of f(x), where, for n≥k, xn+1=xn−f(xn)/pn,k′(xn), pn,k(x) being the polynomial of degree k that interpolates f(x) at xn,xn−1,…,xn−k, the order sk of this method satisfying 1<sk<2. Clearly, when k=1, this method reduces to the secant method with s1=(1+5)/2. In addition, s1<s2<s3<⋯, such that limk→∞sk=2. In this note, we study the application of this method to simple complex roots of a function f(z). We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.


Author(s):  
S. Brodetsky ◽  
G. Smeal

The only really useful practical method for solving numerical algebraic equations of higher orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth century. When an equation with real coefficients has only one or two pairs of complex roots, the Graeffe process leads to the evaluation of these roots without great labour. If, however, the equation has a number of pairs of complex roots there is considerable difficulty in completing the solution: the moduli of the roots are found easily, but the evaluation of the arguments often leads to long and wearisome calculations. The best method that has yet been suggested for overcoming this difficulty is that by C. Runge (Praxis der Gleichungen, Sammlung Schubert). It consists in making a change in the origin of the Argand diagram by shifting it to some other point on the real axis of the original Argand plane. The new moduli and the old moduli of the complex roots can then be used as bipolar coordinates for deducing the complex roots completely: this also checks the real roots.


SPIN ◽  
2021 ◽  
pp. 2140004
Author(s):  
Cheng Xue ◽  
Yuchun Wu ◽  
Guoping Guo

While quantum computing provides an exponential advantage in solving the system of linear equations, there is little work to solve the system of nonlinear equations with quantum computing. We propose quantum Newton’s method (QNM) for solving [Formula: see text]-dimensional system of nonlinear equations based on Newton’s method. In QNM, we solve the system of linear equations in each iteration of Newton’s method with quantum linear system solver. We use a specific quantum data structure and [Formula: see text] tomography with sample error [Formula: see text] to implement the classical-quantum data conversion process between the two iterations of QNM, thereby constructing the whole process of QNM. The complexity of QNM in each iteration is [Formula: see text]. Through numerical simulation, we find that when [Formula: see text], QNM is still effective, so the complexity of QNM is sublinear with [Formula: see text], which provides quantum advantage compared with the optimal classical algorithm.


Author(s):  
Scott A. Burns

Abstract A monomial-based method for solving systems of algebraic nonlinear equations is presented. The method uses the arithmetic-geometric mean inequality to construct a system of monomial equations that approximates the system of nonlinear equations. This “monomial method” is closely related to Newton’s method, yet exhibits many special properties not shared by Newton’s method that enhance performance. These special properties are discussed in relation to engineering design optimization.


Sign in / Sign up

Export Citation Format

Share Document