On Graeffe's Method for Complex Roots of Algebraic Equations

Author(s):  
S. Brodetsky ◽  
G. Smeal

The only really useful practical method for solving numerical algebraic equations of higher orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth century. When an equation with real coefficients has only one or two pairs of complex roots, the Graeffe process leads to the evaluation of these roots without great labour. If, however, the equation has a number of pairs of complex roots there is considerable difficulty in completing the solution: the moduli of the roots are found easily, but the evaluation of the arguments often leads to long and wearisome calculations. The best method that has yet been suggested for overcoming this difficulty is that by C. Runge (Praxis der Gleichungen, Sammlung Schubert). It consists in making a change in the origin of the Argand diagram by shifting it to some other point on the real axis of the original Argand plane. The new moduli and the old moduli of the complex roots can then be used as bipolar coordinates for deducing the complex roots completely: this also checks the real roots.

Author(s):  
А.Н. Громов

Рассмотрен подход к построению расширения промежутка сходимости ранее предложенного обобщения метода Ньютона для решения нелинейных уравнений одного переменного. Подход основан на использовании свойства ограниченности непрерывной функции, определенной на отрезке. Доказано, что для поиска действительных корней вещественнозначного многочлена с комплексными корнями предложенный подход дает итерации с нелокальной сходимостью. Результат обобщен на случай трансцендентных уравнений. An approach to the construction of an extended interval of convergence for a previously proposed generalization of Newton's method to solve nonlinear equations of one variable. This approach is based on the boundedness of a continuous function defined on a segment. It is proved that, for the search for the real roots of a real-valued polynomial with complex roots, the proposed approach provides iterations with nonlocal convergence. This result is generalized to the case transcendental equations.


Fractals ◽  
2015 ◽  
Vol 23 (02) ◽  
pp. 1550004
Author(s):  
M. FERNÁNDEZ-GUASTI

A nondistributive scator algebra in 1 + 2 dimensions is used to map the quadratic iteration. The hyperbolic numbers square bound set reveals a rich structure when taken into the three-dimensional (3D) hyperbolic scator space. Self-similar small copies of the larger set are obtained along the real axis. These self-similar sets are located at the same positions and have equivalent relative sizes as the small M-set copies found between the Myrberg-Feigenbaum (MF) point and -2 in the complex Mandelbrot set. Furthermore, these small copies are self similar 3D copies of the larger 3D bound set. The real roots of the respective polynomials exhibit basins of attraction in a 3D space. Slices of the 3D confined scator set, labeled [Formula: see text](s;x,y), are shown at different planes to give an approximate idea of the 3D objects highly complicated boundary.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Avram Sidi

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form f(x)=0. In a recent work (A. Sidi, Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant method that uses only one evaluation of f(x) per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer k, this method generates a sequence {xn} of approximations to a real root of f(x), where, for n≥k, xn+1=xn−f(xn)/pn,k′(xn), pn,k(x) being the polynomial of degree k that interpolates f(x) at xn,xn−1,…,xn−k, the order sk of this method satisfying 1<sk<2. Clearly, when k=1, this method reduces to the secant method with s1=(1+5)/2. In addition, s1<s2<s3<⋯, such that limk→∞sk=2. In this note, we study the application of this method to simple complex roots of a function f(z). We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.


2016 ◽  
Vol 22 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Xu Wang ◽  
Hui Fan

In the present analytical study, we consider the problem of a nanocrack with surface elasticity interacting with a screw dislocation. The surface elasticity is incorporated by using the continuum-based surface/interface model of Gurtin and Murdoch. By considering both distributed screw dislocations and line forces on the crack, we reduce the interaction problem to two decoupled first-order Cauchy singular integro-differential equations which can be numerically solved by the collocation method. The analysis indicates that if the dislocation is on the real axis where the crack is located, the stresses at the crack tips only exhibit the weak logarithmic singularity; if the dislocation is not on the real axis, however, the stresses exhibit both the weak logarithmic and the strong square-root singularities. Our result suggests that the surface effects of the crack will make the fracture more ductile. The criterion for the spontaneous generation of dislocations at the crack tip is proposed.


2020 ◽  
Vol 32 (5) ◽  
pp. 1131-1141 ◽  
Author(s):  
Paweł Zaprawa

AbstractIn this paper we discuss coefficient problems for functions in the class {{\mathcal{C}}_{0}(k)}. This family is a subset of {{\mathcal{C}}}, the class of close-to-convex functions, consisting of functions which are convex in the positive direction of the real axis. Our main aim is to find some bounds of the difference of successive coefficients depending on the fixed second coefficient. Under this assumption we also estimate {|a_{n+1}|-|a_{n}|} and {|a_{n}|}. Moreover, it is proved that {\operatorname{Re}\{a_{n}\}\geq 0} for all {f\in{\mathcal{C}}_{0}(k)}.


2001 ◽  
Vol 87 (1) ◽  
pp. 54-76 ◽  
Author(s):  
Carter Bays ◽  
Kevin Ford ◽  
Richard H Hudson ◽  
Michael Rubinstein
Keyword(s):  

Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz

The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with n ∈ N. However, this method is limited since it diverges for the case in which polynomials only have complex roots if a real initial condition is taken. In the present work, we explain an iterative method that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-R) Method, which has the ability to enter the space of complex numbers given a real initial condition, which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-Raphson method.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012009
Author(s):  
Joshua Feinberg ◽  
Roman Riser

Abstract We review our recent results on pseudo-hermitian random matrix theory which were hitherto presented in various conferences and talks. (Detailed accounts of our work will appear soon in separate publications.) Following an introduction of this new type of random matrices, we focus on two specific models of matrices which are pseudo-hermitian with respect to a given indefinite metric B. Eigenvalues of pseudo-hermitian matrices are either real, or come in complex-conjugate pairs. The diagrammatic method is applied to deriving explicit analytical expressions for the density of eigenvalues in the complex plane and on the real axis, in the large-N, planar limit. In one of the models we discuss, the metric B depends on a certain real parameter t. As t varies, the model exhibits various ‘phase transitions’ associated with eigenvalues flowing from the complex plane onto the real axis, causing disjoint eigenvalue support intervals to merge. Our analytical results agree well with presented numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document