scholarly journals A maximum principle for multiphase flow models

Author(s):  
К.А. Новиков

Сформулированы и доказаны принципы максимума для нескольких моделей многофазной фильтрации. Первый принцип справедлив для фазовых насыщенностей в несжимаемом случае модели двухфазной фильтрации с постоянными вязкостями, а второй - для глобального давления в моделях двух- и трехфазной фильтрации Two maximum principles for several multi-phase flow models are formulated and proved. The first one is valid for phase saturations in an incompressible two-phase flow model with constant viscosities. The second one is valid for the global pressure in two- and three-phase flow models with constant viscosities and is also valid for phase pressures in the case of zero capillary pressure.

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 374-388 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary Multiphase flow models have been widely used for downhole-gauging and production logging analysis in the wellbores. Coexistence of hydrocarbon fluids with water in production wells yields a complex flow system that requires a three-phase flow model for better characterizing the flow and analyzing measured downhole data. In the past few decades, many researchers and commercial developers in the petroleum industry have aggressively expanded development of robust multiphase flow models for the wellbore. However, many of the developed models apply homogeneous-flow models with limited assumptions for slippage between gas and liquid bulks or use purely two-fluid models. In this paper, we propose a new three-phase flow model that consists of a two-fluid model between liquid and gas and a drift-flux model between water and oil in the liquid phase. With our new method, we improve the simplifying assumptions for modeling oil, water, and gas multiphase flow in wells, which can be advantageous for better downhole flow characterization and phase separations in gravity-dominated systems. Furthermore, we developed semi-implicit and nearly implicit numerical algorithms to solve the system of equations. We discuss the stepwise-development procedures for these methods along with the assumptions in our flow model. We verify our model results against analytical solutions for the water faucet problem and phase redistribution, field data, and a commercial simulator. Our model results show very good agreement with benchmarks in the data.


2013 ◽  
Vol 734-737 ◽  
pp. 3016-3021 ◽  
Author(s):  
Hai Yan Cao ◽  
Xue Mei Duan ◽  
Hua Xiang Wang

Electrical Capacitance Tomography technique is a new technique for multi-phase flow measurement. With broad application prospects, the purpose of this technique is to identify each phases composition of two-phase/multi-phase flow system in a closed pipe. A new method COMSOL was used to analysis the electrical capacitance tomography of reconstruction image and simulation research. First of all, different electrical models were established, and the reconstruction images of four kinds of representative flow were achieved; In addition, through simulation study of the field with disperse phase, the influence of the electrode number, shielding case and radial electrode to the imaging quality were analyzed; Finally, the reconstruction images of three-phase flow were achieved to obtain the satisfactory result.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Pablo Castañeda ◽  
Dan Marchesin ◽  
Frederico Furtado

AbstractUniversality, a desirable feature in any system. For decades, elusive measurements of three-phase flows have yielded countless permeability models that describe them. However, the equations governing the solution of water and gas co-injection has a robust structure. This universal structure stands for Riemann problems in green oil reservoirs. In the past we established a large class of three phase flow models including convex Corey permeability, Stone I and Brooks–Corey models. These models share the property that characteristic speeds become equal at a state somewhere in the interior of the saturation triangle. Here we construct a three-phase flow model with unequal characteristic speeds in the interior of the saturation triangle, equality occurring only at a point of the boundary of the saturation triangle. Yet the solution for this model still displays the same universal structure, which favors the two possible embedded two-phase flows of water-oil or gas-oil. We focus on showing this structure under the minimum conditions that a permeability model must meet. This finding is a guide to seeking a purely three-phase flow solution maximizing oil recovery.


2015 ◽  
Vol 51 (43) ◽  
pp. 8916-8919 ◽  
Author(s):  
Milad Abolhasani ◽  
Nicholas C. Bruno ◽  
Klavs F. Jensen

Oscillatory flow reactor strategy removes the mixing, mass transfer and residence time limitations associated with continuous multi-phase flow approaches for studies of bi-phasic C–C and C–N catalytic reactions.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1506-1518 ◽  
Author(s):  
Pedram Mahzari ◽  
Mehran Sohrabi

Summary Three-phase flow in porous media during water-alternating-gas (WAG) injections and the associated cycle-dependent hysteresis have been subject of studies experimentally and theoretically. In spite of attempts to develop models and simulation methods for WAG injections and three-phase flow, current lack of a solid approach to handle hysteresis effects in simulating WAG-injection scenarios has resulted in misinterpretations of simulation outcomes in laboratory and field scales. In this work, by use of our improved methodology, the first cycle of the WAG experiments (first waterflood and the subsequent gasflood) was history matched to estimate the two-phase krs (oil/water and gas/oil). For subsequent cycles, pertinent parameters of the WAG hysteresis model are included in the automatic-history-matching process to reproduce all WAG cycles together. The results indicate that history matching the whole WAG experiment would lead to a significantly improved simulation outcome, which highlights the importance of two elements in evaluating WAG experiments: inclusion of the full WAG experiments in history matching and use of a more-representative set of two-phase krs, which was originated from our new methodology to estimate two-phase krs from the first cycle of a WAG experiment. Because WAG-related parameters should be able to model any three-phase flow irrespective of WAG scenarios, in another exercise, the tuned parameters obtained from a WAG experiment (starting with water) were used in a similar coreflood test (WAG starting with gas) to assess predictive capability for simulating three-phase flow in porous media. After identifying shortcomings of existing models, an improved methodology was used to history match multiple coreflood experiments simultaneously to estimate parameters that can reasonably capture processes taking place in WAG at different scenarios—that is, starting with water or gas. The comprehensive simulation study performed here would shed some light on a consolidated methodology to estimate saturation functions that can simulate WAG injections at different scenarios.


Author(s):  
Farhang Behrangi ◽  
Mohammad Ali Banihashemi ◽  
Masoud Montazeri Namin ◽  
Asghar Bohluly

2014 ◽  
Vol 35 (1) ◽  
pp. 75-96 ◽  
Author(s):  
Andrzej Burghardt

Abstract The majority of publications and monographs present investigations which concern exclusively twophase flows and particulary dispersed flows. However, in the chemical and petrochemical industries as well as in refineries or bioengineering, besides the apparatuses of two-phase flows there is an extremely broad region of three-phase systems, where the third phase constitutes the catalyst in form of solid particles (Duduković et al., 2002; Martinez et al., 1999) in either fixed bed or slurry reactors. Therefore, the goal of this study is to develop macroscopic, averaged balances of mass, momentum and energy for systems with three-phase flow. Local instantaneous conservation equations are derived, which constitute the basis of the method applied, and are averaged by means of Euler’s volumetric averaging procedure. In order to obtain the final balance equations which define the averaged variables of the system, the weighted averaging connected with Reynolds decomposition is used. The derived conservation equations of the trickle-bed reactor (mass, momentum and energy balance) and especially the interphase effects appearing in these equations are discussed in detail.


2011 ◽  
Vol 230 (22) ◽  
pp. 8304-8312 ◽  
Author(s):  
C.-H. Park ◽  
N. Böttcher ◽  
W. Wang ◽  
O. Kolditz

Sign in / Sign up

Export Citation Format

Share Document