NEUTROPHILS FROM ANCA-ASSOCIATED VASCULITIS PATIENTS SHOW AN INCREASED CAPACITY TO ACTIVATE THE COMPLEMENT SYSTEM VIA THE ALTERNATIVE PATHWAY

Author(s):  
Sophie Ohlsson
PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218272 ◽  
Author(s):  
Sophie Ohlsson ◽  
Lisa Holm ◽  
Christina Hansson ◽  
Susanne M. Ohlsson ◽  
Lena Gunnarsson ◽  
...  

Immunobiology ◽  
2016 ◽  
Vol 221 (10) ◽  
pp. 1197
Author(s):  
Lisa Holm ◽  
Sophie Ohlsson ◽  
Thomas Hellmark ◽  
Lillemor Skattum ◽  
Lena Gunnarsson

Parasitology ◽  
1983 ◽  
Vol 87 (1) ◽  
pp. 75-86 ◽  
Author(s):  
A. Ruppel ◽  
U. Rother ◽  
H. Vongerichten ◽  
H. J. Diesfeld

SUMMARYLiving Schistosoma mansoni of various developmental stages were studied with respect to their ability to activate the complement system in sera of humans, mice and rats. Immunofluorescence assays demonstrated that binding of human C3 occurred on fresh schistosomula as well as on schistosomula prepared from mouse lymph-nodes or lungs and on adult schistosomes. However, rodent C3 was deposited only on fresh schistosomula. Deposition of human C3 on the worms' surface required activation of the complement system. The alternative pathway was shown to be involved in deposition of human C3 on schistosomes of all ages, whereas activation of the classical pathway was demonstrable only with fresh schistosomula. Immunoelectrophoretic studies demonstrated a dose-dependent cleavage of human C3 and conversion of factor B by living adult schistosomes. The results demonstrate that the ability of living schistosomes to activate complement in vitro is dependent not only on their developmental stage but also on the species of the serum.


2002 ◽  
Vol 11 (8) ◽  
pp. 787-797 ◽  
Author(s):  
Ryo Suzuki ◽  
Yasuo Yoshioka ◽  
Etsuko Kitano ◽  
Tatsunobu Yoshioka ◽  
Hiroaki Oka ◽  
...  

Cell therapy is expected to relieve the shortage of donors needed for organ transplantation. When patients are treated with allogeneic or xenogeneic cells, it is necessary to develop a means by which to isolate administered cells from an immune attack by the host. We have developed “cytomedicine, ” which consists of functional cells entrapped in semipermeable polymer, and previously reported that alginate-poly-l-lysine-alginate microcapsules and agarose microbeads could protect the entrapped cells from injury by cellular immunity. However, their ability to isolate from humoral immunity was insufficient. It is well known that the complement system plays an essential role in rejection of transplanted cells by host humoral immunity. Therefore, the goal of the present study was to develop a novel cytomedical device containing a polymer capable of inactivating complement. In the screening of various polymers, polyvinyl sulfate (PVS) exhibited high anticomplement activity and low cytotoxicity. Murine pancreatic β-cell line (MIN6 cell) entrapped in agarose microbeads containing PVS maintained viability and physiological insulin secretion, replying in response to glucose concentration, and resisted rabbit antisera in vitro. PVS inhibited hemolysis of sensitized sheep erythrocytes (EAs) and rabbit erythrocytes by the complement system. This result suggests that PVS inhibits both the classical and alternative complement pathways of the complement system. Next, the manner in which PVS exerts its effects on complement components was examined. PVS was found to inhibit generation of C4a and Ba generation in activation of the classical and alternative pathways, respectively. Moreover, when the EAC1 cells, which were carrying C1 on the EAs, treated with PVS were exposed to C1-deficient serum, hemolysis decreased in a PVS dose-dependent manner. These results suggest that PVS inhibits C1 in the classical pathway and C3 convertase formation in the alternative pathway. Therefore, PVS may be a useful polymer for developing an anticomplement device for cytomedical therapy.


1996 ◽  
Vol 19 (3) ◽  
pp. 156-163 ◽  
Author(s):  
P. Thylén ◽  
E. Fernvik ◽  
J. Lundahl ◽  
J. Hed ◽  
S.H. Jacobson

We studied the generation of CD11b/CD18 mobilizing factors in serum after incubation with dialysis membrane fragments of different chemical composition. We also evaluated the relative importance of the alternative and classical pathways of the complement system in the generation of such factors. Monocytes and granulocytes from healthy blood donors were incubated in normal human serum (NHS) and in NHS that had been preincubated with Cuprophan (CU) membrane (NHS-CU), Hemophan (HE) (NHS-HE) or polysulfone (PS) (NHS-PS). NHS-CU caused the highest up-regulation of the CD11b/CD18 receptor on monocytes and granulocytes. The rank in capacity to mobilize CD11b/CD18 on granulocytes was CU>HE>PS (p<0.001), CU>HE (p<0.05) and HE>PS (p<0.001). The rank in capacity to mobilize CD11b/CD18 on monocytes was CU>HE>PS (p<0.001), CU>HE (p<0.05) and HE>PS (p<0.01). NHS-PS induced a lower up-regulation of CD11b/CD18 compared to NHS which indicates that serum factors with the ability to mobilize the CD11b/CD18 receptor on monocytes and granulocytes are deposited on or adsorbed by PS. In order to study the relative contribution of the alternative and classical pathways of the complement system in the generation of CD11b/CD18 mobilizing factors in serum, three different serum preparations (1. both pathways intact. 2. only the alternative intact and 3. only the classical pathway intact) were used. The CU membrane activated the classical pathway to a larger extent than the PS membrane (p<0.01). When only the alternative pathway was intact no difference in the generation of CD11b/CD18 mobilizing factors between the CU and PS membranes was observed. These studies show that CD11b/CD18 mobilizing serum factors are generated after incubation with CU membranes and that such factors are probably adsorbed by PS. The classical pathway of complement activation seems to contribute to the generation of CD11b/CD18 mobilizing factors in serum.


Isolated genetic deficiencies of individual components of the complement system have been described in man for all the components of the classical pathway and the membrane attack complex as well as for Factor I, Factor H and properdin. It is only for Factor B and Factor D of the alternative pathway that homozygous deficiency states are not so far known. Complement deficiency states provide the most direct way of looking at the role of the complement system in vivo and emphasize the importance of complement in resistance to bacterial infection and in particular to infection with Neisseria . This association is not unexpected since in vitro studies have shown complement to be an efficient enhancer of phagocytosis and inflammation. The particularly frequent occurrence of neisserial infection may be ascribed to the ability of these organisms to survive in phagocytic cells so that the plasma cytolytic activity provided by complement is needed to kill them. On the other hand the strong association between complement deficiencies and immune-complex diseases - especially systemic lupus erythematosus — was unexpected and seems paradoxical in view of the large part played by complement in the pathogenesis of immune complex mediated tissue damage. The paradox can be explained in part by the necessity for an intact complement system in the solubilization and the proper handling of immune complexes. It is also likely that complement deficiency can allow the persistence of low virulence organisms that produce disease solely by an immune complex mechanism. Recently described deficiencies of complement receptors and their effects in vivo are described.


2009 ◽  
Vol 78 (3) ◽  
pp. 1250-1259 ◽  
Author(s):  
Gayle M. Boxx ◽  
Thomas R. Kozel ◽  
Casey T. Nishiya ◽  
Mason X. Zhang

ABSTRACT The complement system is important for host resistance to hematogenously disseminated candidiasis. However, modulation of complement activation by cell wall components of Candida albicans has not been characterized. Although intact yeast display mannan on the surface, glucan, typically located in the interior, becomes exposed during C. albicans infection. We show here the distinct effects of mannan and glucan on complement activation and opsonophagocytosis. Previous studies showed that intact cells are resistant to initiation of complement activation through the alternative pathway, and antimannan antibody reverses this resistance via an Fc-independent mechanism. The present study shows that this mannan-dependent resistance can be overcome by periodate-borohydride conversion of mannose polysaccharides to polyalcohols; cells treated with periodate-borohydride initiate the alternative pathway without the need for antibody. These observations identify an inhibitory role for intact mannan in complement activation. Next, removal of the surface-displayed mannan by acid treatment of periodate-borohydride cells exposes glucan. Glucan-displaying cells or purified β-glucan initiate the alternative pathway when incubated with the purified proteins of the alternative pathway alone, suggesting that C. albicans glucan is a natural activator of the alternative pathway. Finally, ingestion of mannan-displaying cells by human neutrophils requires anti-mannan antibody, whereas ingestion of glucan-displaying cells requires complement. These results demonstrate a contrasting requirement of natural antibody and complement for opsonophagocytosis of C. albicans cells displaying mannan or glucan. Thus, differential surface expression of mannan and glucan may influence recognition of C. albicans by the complement system.


1997 ◽  
Vol 63 (2-3) ◽  
pp. 167-183
Author(s):  
Enrique Peacock-López ◽  
Katherine L. Queeney

Sign in / Sign up

Export Citation Format

Share Document