Hydrogen molecule treatment enhancesincreases ATP production in human spermatozoa

Author(s):  
Kumiko Nakata
2016 ◽  
Vol 106 (3) ◽  
pp. e302-e303
Author(s):  
K. Nakata ◽  
K. Yoshida ◽  
M. Yoshida ◽  
N. Yamashita

Andrologia ◽  
2016 ◽  
Vol 49 (3) ◽  
pp. e12615 ◽  
Author(s):  
P. Uribe ◽  
F. Treulen ◽  
R. Boguen ◽  
R. Sánchez ◽  
J. V. Villegas

2017 ◽  
Vol 29 (7) ◽  
pp. 1435 ◽  
Author(s):  
María Eugenia Cabrillana ◽  
María de los Ángeles Monclus ◽  
Tania Estefania Sáez Lancellotti ◽  
Paola Vanina Boarelli ◽  
Amanda Edith Vincenti ◽  
...  

Male infertility is a disorder of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. The presence of low-motile or immotile spermatozoa is one of many causes of infertility; however, this observation provides little or no information regarding the pathogenesis of the malfunction. Good sperm motility depends on correct assembly of the sperm tail in the testis and efficient maturation during epididymal transit. Thiols of flagellar proteins, such as outer dense fibre protein 1 (ODF1), are oxidised to form disulfides during epididymal transit and the spermatozoa become motile. This study was designed to determine how oxidative changes in protein thiol status affect progressive motility in human spermatozoa. Monobromobimane (mBBr) was used as a specific thiol marker and disruptor of sperm progressive motility. When mBBr was blocked by dithiothreitol it did not promote motility changes. The analysis of mBBr-treated spermatozoa revealed a reduction of progressive motility and an increased number of spermatozoa with non-progressive motility without affecting ATP production. Laser confocal microscopy and western blot analysis showed that one of the mBBr-positive proteins reacted with an antibody to ODF1. Monobromobimane fluorescence intensity of the sperm tail was lower in normozoospermic than asthenozoospermic men, suggesting that thiol oxidation in spermatozoa of asthenozoospermic men is incomplete. Our findings indicate that mBBr affects the thiol status of ODF1 in human spermatozoa and interferes with progressive motility.


Author(s):  
P. Hernández-Jáuregui ◽  
A. Sosa ◽  
A. González Angulo

Glycocalyx is the name given by Bennett to the extracellular glycoprotein coat present in some cell surfaces. It appears to play an important role in cell properties such as antigenicity, cell adhesivity, specific permeability, and ATP ase activity. In the sperm this coat can be directly related to such important phenomena as capacitation and fertilization. The presence of glycocalyx in invertebrate spermatozoa has already been demonstrated. Recently Yanagimachi et al. has determined the negative charges on sperm surfaces of mammalian spermatozoa including man, using colloidal iron hydroxide. No mention was made however of the outer surface coat as composed of substances other than those confering a negative charge. The purpose of this work was therefore to determine the presence of a glycocalyx in human spermatozoa using alcian blue and lanthanum staining.


Author(s):  
A. Sosa ◽  
L. Calzada

The dependence of nuclear metabolism on the function of the nuclear membrane is not well understood. Whether or not the function of the nuclear membrane is partial or totally responsible of the repressed template activity of human sperm nucleus has not at present been elucidated. One of the membrane-bound enzymatic activities which is concerned with the mechanisms whereby substances are thought to cross cell membranes is adenosintriphosphatase (ATPase). This prompted its characterization and distribution by high resolution photogrammetry on isolated human sperm nuclei. Isolated human spermatozoa nuclei were obtained as previously described. ATPase activity was demonstrated by the method of Wachstein and Meisel modified by Marchesi and Palade. ATPase activity was identified as dense and irregularly distributed granules confined to the internal leaflet of the nuclear membrane. Within the nucleus the appearance of the reaction product occurs as homogenous and dense precipitates in the interchromatin space.


2001 ◽  
Vol 24 (6) ◽  
pp. 327-334 ◽  
Author(s):  
A. Force ◽  
G. Grizard ◽  
M. N. Giraud ◽  
C. Motta ◽  
B. Sion ◽  
...  

2014 ◽  
Vol 84 (3-4) ◽  
pp. 0183-0195 ◽  
Author(s):  
Takashi Nakamura ◽  
Tomoya Takeda ◽  
Yoshihiko Tokuji

The common water-soluble organic germanium compound poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) exhibits activities related to immune responses and antioxidant induction. In this study, we evaluated the antioxidative effect of dietary Ge-132 in the plasma of mice. Male ICR mice (seven mice per group) received an AIN-76 diet with 0.05 % Ge-132; three groups received the Ge-132-containing diet for 0, 1 or 4 days. The plasma alpha-tocopherol (α-tocopherol) concentration increased from 6.85 to 9.60 μg/ml after 4 days of Ge-132 intake (p < 0.05). We evaluated the changes in hepatic gene expression related to antioxidative activity as well as in the entire expression profile after one day of Ge-132 intake, using DNA microarray technology. We identified 1,220 genes with altered expression levels greater than 1.5-fold (increased or decreased) as a result of Ge-132 intake, and α-tocopherol transfer protein (Ttpa) gene expression was increased 1.62-fold. Immune activation was identified as the category with the most changes (containing 60 Gene Ontology (GO) term biological processes (BPs), 41 genes) via functional clustering analysis of altered gene expression. Ge-132 affected genes in clusters related to ATP production (22 GO term BPs, 21 genes), lipid metabolism (4 GO term BPs, 38 genes) and apoptosis (5 GO term BPs). Many GO term BPs containing these categories were significantly affected by the Ge-132 intake. Oral Ge-132 intake may therefore have increased plasma α-tocopherol levels by up-regulating α-tocopherol transfer protein (Ttpa) gene expression.


Sign in / Sign up

Export Citation Format

Share Document