Influence of Gas Density on Atomization using High Turbulent Stress

Author(s):  
Paul Strykowski
Keyword(s):  
2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Haicheng Xiao ◽  
Shengfeng Wang ◽  
Yan Peng ◽  
Daniel M. Mittleman ◽  
Jiayu Zhao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4532
Author(s):  
Marek Litniewski ◽  
Alina Ciach

A binary mixture of oppositely charged particles with additional short-range attraction between like particles and short-range repulsion between different ones in the neighborhood of a substrate preferentially adsorbing the first component is studied by molecular dynamics simulations. The studied thermodynamic states correspond to an approach to the gas–crystal coexistence. Dependence of the near-surface structure, adsorption and selective adsorption on the strength of the wall–particle interactions and the gas density is determined. We find that alternating layers or bilayers of particles of the two components are formed, but the number of the adsorbed layers, their orientation and the ordered patterns formed inside these layers could be quite different for different substrates and gas density. Different structures are associated with different numbers of adsorbed layers, and for strong attraction the thickness of the adsorbed film can be as large as seven particle diameters. In all cases, similar amount of particles of the two components is adsorbed, because of the long-range attraction between different particles.


2020 ◽  
Vol 633 ◽  
pp. L3 ◽  
Author(s):  
Nushkia Chamba ◽  
Ignacio Trujillo ◽  
Johan H. Knapen

Now almost 70 years since its introduction, the effective or half-light radius has become a very popular choice for characterising galaxy size. However, the effective radius measures the concentration of light within galaxies and thus does not capture our intuitive definition of size which is related to the edge or boundary of objects. For this reason, we aim to demonstrate the undesirable consequence of using the effective radius to draw conclusions about the nature of faint ultra-diffuse galaxies (UDGs) when compared to dwarfs and Milky Way-like galaxies. Instead of the effective radius, we use a measure of galaxy size based on the location of the gas density threshold required for star formation. Compared to the effective radius, this physically motivated definition places the sizes much closer to the boundary of a galaxy. Therefore, considering the sizes and stellar mass density profiles of UDGs and regular dwarfs, we find that the UDGs have sizes that are within the size range of dwarfs. We also show that currently known UDGs do not have sizes comparable to Milky Way-like objects. We find that, on average, UDGs are ten times smaller in extension than Milky Way-like galaxies. These results show that the use of size estimators sensitive to the concentration of light can lead to misleading results.


2021 ◽  
Vol 504 (1) ◽  
pp. 723-730
Author(s):  
Shengqi Yang ◽  
Adam Lidz ◽  
Gergö Popping

ABSTRACT The [O iii] 88 $\mu$m fine-structure emission line has been detected into the Epoch of Reionization (EoR) from star-forming galaxies at redshifts 6 < z ≲ 9 with ALMA. These measurements provide valuable information regarding the properties of the interstellar medium (ISM) in the highest redshift galaxies discovered thus far. The [O iii] 88 $\mu$m line observations leave, however, a degeneracy between the gas density and metallicity in these systems. Here, we quantify the prospects for breaking this degeneracy using future ALMA observations of the [O iii] 52 $\mu$m line. Among the current set of 10 [O iii] 88 $\mu$m emitters at 6 < z ≲ 9, we forecast 52 $\mu$m detections (at 6σ) in SXDF-NB1006-2, B14-6566, J0217-0208, and J1211-0118 within on-source observing times of 2–10 h, provided their gas densities are larger than about nH ≳ 102–103 cm−3. Other targets generally require much longer integration times for a 6σ detection. Either successful detections of the 52 $\mu$m line or reliable upper limits will lead to significantly tighter constraints on ISM parameters. The forecasted improvements are as large as ∼3 dex in gas density and ∼1 dex in metallicity for some regions of parameter space. We suggest SXDF-NB1006-2 as a promising first target for 52 $\mu$m line measurements. We discuss how such measurements will help in understanding the mass–metallicity relationship during the EoR.


2016 ◽  
Vol 23 (8) ◽  
pp. 083512 ◽  
Author(s):  
S. C. Schaub ◽  
J. S. Hummelt ◽  
W. C. Guss ◽  
M. A. Shapiro ◽  
R. J. Temkin

1994 ◽  
Author(s):  
N. O. Dubnova ◽  
K. G. Tokhadze ◽  
N. N. Filippov ◽  
Z. Mielke

Sign in / Sign up

Export Citation Format

Share Document