density threshold
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiayu Liu ◽  
Lei Li ◽  
Yuan Li ◽  
Qian Wang ◽  
Ruen Liu ◽  
...  

AbstractTo contribute to the understanding of the aetiology and pathogenesis of Meige syndrome, the metabolic networks of patients with Meige syndrome were investigated using 18F-fluoro-D-glucose positron emission tomography (18F-FDG-PET) imaging of cerebral glucose metabolism. Fifty right-handed and unmedicated primary Meige syndrome patients enrolled between September 2017 and September 2020 at the Department of Neurosurgery, Peking University People’s Hospital, and 50 age- and sex-matched healthy control subjects participated in the study. Metabolic connectivity and graph theory analysis were used to investigate metabolic network differences based on 18F-FDG-PET images. Glucose hypometabolism was detected in the left internal globus pallidus and parietal lobe, right frontal lobe and postcentral gyrus, and bilateral thalamus and cerebellum of patients with Meige syndrome. Clustering coefficients (Cps) (density threshold: 16–28%; P < 0.05) and shortest path lengths (Lps) (density threshold: 10–15%; P < 0.05) were higher in Meige syndrome patients than in healthy controls. Small-worldness was lower in Meige syndrome patients than in healthy controls, and centrality was significantly lower in the right superior occipital gyrus and pallidum and higher in the right thalamus. Hypometabolism in the globus pallidus and thalamus may indicate basal ganglia-thalamocortical motor circuit abnormalities as a pathogenic mechanism of Meige syndrome, providing a possible explanation for the efficacy of deep brain stimulation (DBS) in improving symptoms. Meige syndrome patients had abnormal small-world properties. Centrality changes in the right pallidus and thalamus verified the important roles of these regions in the pathogenesis of Meige syndrome.


2021 ◽  
Author(s):  
Joydeb Bhattacharyya ◽  
Joydev Chattopadhyay

Abstract In ecology, the refuge protection of the prey plays a significant role in the dynamics of the interactions between prey and predator. In this paper, we investigate the dynamics of a non-smooth prey-predator mathematical model characterized by density-dependent intermittent refuge protection of the prey. The model assumes the population density of the predator as an index for the prey to decide on when to avail or discontinue refuge protection, representing the level of apprehension of the prey by the predators. We apply Filippov's regularization approach to study the model and obtain the sliding segment of the system. We obtain the criterion for the existence of the regular or virtual equilibria, boundary equilibrium, tangent points, and pseudo-equilibria of the Filippov system. The conditions for the visibility (or invisibility) of the tangent points are derived. We investigate the regular or virtual equilibrium bifurcation, boundary-node bifurcation and pseudo-saddle-node bifurcation. Further, we examine the effects of dispersal delay on the Filippov system associated with prey vigilance in identifying the predator population density. We observe that the hysteresis in the Filippov system produces stable limit cycles around the predator population density threshold in some bounded region in the phase plane. Moreover, we find that the level of apprehension and vigilance of the prey play a significant role in their refuge-dispersion dynamics.


2021 ◽  
Vol 887 ◽  
pp. 345-350
Author(s):  
Yu.V. Khomich ◽  
S.I. Mikolutskiy ◽  
V.E. Rogalin ◽  
I.A. Kaplunov ◽  
A.I. Ivanova

The threshold of optical breakdown of the nickel alloy ChS57 (Inconel) was measured at a wavelength of 0.355 μm with a laser pulse duration of 10 ns. Heat treatment of ChS57 above pulse energy density threshold (1 - 2.5 J/cm2) occurred mainly in the ablative mode with almost no melting. The elemental composition of the surface layer did not change at an irradiation in a fixed spot. When a laser beam moves along the surface of the sample at a speed of 1 mm / s and at pulse energy density of about 0.02 J/cm2, oxygen was detected in the elemental composition (3 – 4 wt. %). However, the proportions of the elemental composition of the alloy remained virtually unchanged. Heat treatment under threshold at pulse energy density ≥ 0.25 J/cm2 revealed a rise of the surface layer with traces of high-temperature plastic deformation in the form of slippage on grain boundaries and crystallographic slip.


2021 ◽  
pp. 197140092110123
Author(s):  
Julie Adhya ◽  
Charles Li ◽  
Laura Eisenmenger ◽  
Russell Cerejo ◽  
Ashis Tayal ◽  
...  

Purpose Several new techniques have emerged for detecting anterior circulation large vessel occlusion by quantifying relative vessel density including RAPID-CTA, potentially allowing for faster triage and decreased time to mechanical thrombectomy. We present our one-year experience on positive predictive value of RAPID-CTA for the detection of large vessel occlusion in patients presenting with stroke symptoms and its effect on treatment time and clinical outcomes. Materials and methods Three hundred and ten patients presenting with stroke symptoms with relative vessel density <60% on RAPID-CTA were included (average age 70 years, 145 male, 165 female). Examinations were considered positive if there was evidence of large vessel occlusion or high grade stenosis. Computed tomography angiography to groin puncture time was calculated during one-year time intervals before and after RAPID-CTA installation. Ninety-day Modified Rankin Scale scores were obtained for patients in each cohort. Results Of the 310 patients, 270 had large vessel occlusion or high grade stenosis (87% positive predictive value), with 161 having large vessel occlusion. Using 45% relative vessel density threshold, 129/161 large vessel occlusion were detected (80% sensitivity) and 163/172 examinations were positive (95% positive predictive value). Computed tomography angiography to groin puncture time was significantly lower after deployment of RAPID-CTA (93 min vs 68 min, p<0.05). Average 90 day modified Rankin Scale score was lower in the RAPID-CTA group with a higher percentage of patients with functional independence, although the data was not statistically significant. Conclusion RAPID-CTA had high positive predictive value for large vessel occlusion with a 45% relative vessel density threshold, which could facilitate active worklist reprioritization. Time to treatment was significantly lower and clinical outcomes were improved after deployment of RAPID-CTA.


2021 ◽  
Author(s):  
Rogelio A. Hernandez-Lopez ◽  
Wei Yu ◽  
Katie Cabral ◽  
Olivia Creasey ◽  
Maria del Pilar Lopez Pazmino ◽  
...  

AbstractOverexpressed tumor associated antigens (e.g. HER2 and EGFR) are attractive targets for therapeutic T cells, but toxic cross-reaction with normal tissues expressing low antigen levels has been observed with Chimeric Antigen Receptor (CAR) T cells targeting such antigens. Inspired by natural ultrasensitive response circuits, we engineer a two-step positive feedback circuit that allows T cells to discriminate targets based on a sigmoidal antigen density threshold. In this circuit, a low affinity SynNotch receptor for HER2 controls the expression of a high affinity CAR for HER2. Increasing HER2 density thus has cooperative effects on T cells ╌ it both increases CAR expression and activation ╌ leading to a sigmoidal response. T Cells with this circuit show sharp discrimination between target cells expressing normal and disease levels of HER2, both in vitro and in vivo.One Sentence SummaryA two-step positive feedback circuit generates engineered T cells capable of killing target cells with an ultrasensitive antigen density threshold.


2020 ◽  
Vol 643 ◽  
pp. A100
Author(s):  
T. M. Siewert ◽  
C. Hale ◽  
N. Bhardwaj ◽  
M. Biermann ◽  
D. J. Bacon ◽  
...  

Context. The LOFAR Two-metre Sky Survey (LoTSS) will eventually map the complete Northern sky and provide an excellent opportunity to study the distribution and evolution of the large-scale structure of the Universe. Aims. We test the quality of LoTSS observations through a statistical comparison of the LoTSS first data release (DR1) catalogues to expectations from the established cosmological model of a statistically isotropic and homogeneous Universe. Methods. We study the point-source completeness and define several quality cuts, in order to determine the count-in-cell statistics and differential source count statistics, and measure the angular two-point correlation function. We use the photometric redshift estimates, which are available for about half of the LoTSS-DR1 radio sources, to compare the clustering throughout the history of the Universe. Results. For the masked LoTSS-DR1 value-added source catalogue, we find a point-source completeness of 99% above flux densities of 0.8 mJy. The counts-in-cell statistic reveals that the distribution of radio sources cannot be described by a spatial Poisson process. Instead, a good fit is provided by a compound Poisson distribution. The differential source counts are in good agreement with previous findings in deep fields at low radio frequencies and with simulated catalogues from the SKA Design Study and the Tiered Radio Extragalactic Continuum Simulation. Restricting the value added source catalogue to low-noise regions and applying a flux density threshold of 2 mJy provides our most reliable estimate of the angular two-point correlation. Based on the distribution of photometric redshifts and the Planck 2018 best-fit cosmological model, the theoretically predicted angular two-point correlation between 0.1 deg and 6 deg agrees reasonably well with the measured clustering for the sub-sample of radio sources with redshift information. Conclusions. The deviation from a Poissonian distribution might be a consequence of the multi-component nature of a large number of resolved radio sources and/or of uncertainties on the flux density calibration. The angular two-point correlation function is < 10−2 at angular scales > 1 deg and up to the largest scales probed. At a 2 mJy flux density threshold and at a pivot angle of 1 deg, we find a clustering amplitude of A = (5.1 ± 0.6) × 10−3 with a slope parameter of γ = 0.74 ± 0.16. For smaller flux density thresholds, systematic issues are identified, which are most likely related to the flux density calibration of the individual pointings. We conclude that we find agreement with the expectation of large-scale statistical isotropy of the radio sky at the per cent level. The angular two-point correlation agrees well with the expectation of the cosmological standard model.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2020 ◽  
Vol 10 (18) ◽  
pp. 6525
Author(s):  
Guy Iverson ◽  
Christa Sanderford ◽  
Charles P. Humphrey ◽  
J. Randall Etheridge ◽  
Timothy Kelley

Wastewater contains elevated concentrations of fecal indicator bacteria (FIB). The type of wastewater treatment technology and septic system density may influence the FIB concentration and exports at the watershed scale. The goal of this study was to gain a better understanding of FIB concentrations and exports from watersheds served by conventional septic (CS) systems, sand filter (SF) septic systems, and a municipal sewer (SEW) system. Seven watersheds (3 CS, 3 SF, and 1 SEW) were monitored to quantify FIB concentration and export monthly from April 2015 to March 2016. The type of wastewater treatment did not yield significant differences in FIB concentration or exports when pooling watersheds using similar wastewater treatment. Watersheds with the highest septic densities (approximately 0.4 systems ha−1) contained greater FIB concentrations and exports than watersheds with the lowest (approximately 0.1–0.2 systems ha−1), but only FIB concentrations significantly differed. These findings suggest that when the septic system density exceeds 0.4 systems ha−1, water quality degradation from septic leachate may be observable at the watershed scale, especially in watersheds dominated by residential development. More research is recommended to determine if this density threshold is similar for other water pollutants and/or in watersheds with differing hydrogeological, land use, and wastewater characteristics.


Sign in / Sign up

Export Citation Format

Share Document