scholarly journals Are ultra-diffuse galaxies Milky Way-sized?

2020 ◽  
Vol 633 ◽  
pp. L3 ◽  
Author(s):  
Nushkia Chamba ◽  
Ignacio Trujillo ◽  
Johan H. Knapen

Now almost 70 years since its introduction, the effective or half-light radius has become a very popular choice for characterising galaxy size. However, the effective radius measures the concentration of light within galaxies and thus does not capture our intuitive definition of size which is related to the edge or boundary of objects. For this reason, we aim to demonstrate the undesirable consequence of using the effective radius to draw conclusions about the nature of faint ultra-diffuse galaxies (UDGs) when compared to dwarfs and Milky Way-like galaxies. Instead of the effective radius, we use a measure of galaxy size based on the location of the gas density threshold required for star formation. Compared to the effective radius, this physically motivated definition places the sizes much closer to the boundary of a galaxy. Therefore, considering the sizes and stellar mass density profiles of UDGs and regular dwarfs, we find that the UDGs have sizes that are within the size range of dwarfs. We also show that currently known UDGs do not have sizes comparable to Milky Way-like objects. We find that, on average, UDGs are ten times smaller in extension than Milky Way-like galaxies. These results show that the use of size estimators sensitive to the concentration of light can lead to misleading results.

2020 ◽  
Vol 493 (1) ◽  
pp. 87-105 ◽  
Author(s):  
Ignacio Trujillo ◽  
Nushkia Chamba ◽  
Johan H Knapen

ABSTRACT Present-day multiwavelength deep imaging surveys allow to characterize the outskirts of galaxies with unprecedented precision. Taking advantage of this situation, we define a new physically motivated measurement of size for galaxies based on the expected location of the gas density threshold for star formation. Employing both theoretical and observational arguments, we use the stellar mass density contour at 1 M⊙ pc−2 as a proxy for this density threshold for star formation. This choice makes our size definition operative. With this new size measure, the intrinsic scatter of the global stellar mass (M⋆)–size relation (explored over five orders of magnitude in stellar mass) decreases to ∼0.06 dex. This value is 2.5 times smaller than the scatter measured using the effective radius (∼0.15 dex) and between 1.5 and 1.8 times smaller than those using other traditional size indicators such as R23.5, i (∼0.09 dex), the Holmberg radius RH (∼0.09 dex), and the half-mass radius $R_{\rm e,M_{\star }}$ (∼0.11 dex). Moreover, galaxies with 107 M⊙ < M⋆ < 1011 M⊙ increase monotonically in size following a power law with a slope very close to 1/3, equivalent to an average stellar mass 3D density of ∼4.5 × 10−3 M⊙ pc−3 for galaxies within this mass range. Galaxies with M⋆ > 1011 M⊙ show a different slope with stellar mass, which is suggestive of a larger gas density threshold for star formation at the epoch when their star formation peaks.


2016 ◽  
Vol 11 (S321) ◽  
pp. 84-86
Author(s):  
Rhea-Silvia Remus ◽  
Andreas Burkert ◽  
Klaus Dolag

AbstractThe outer stellar halos of galaxies contain vital information about the formation history of galaxies, since the relaxation timescales in the outskirts are long enough to keep the memory, while the information about individual formation events in the central parts has long been lost due to mixing, star formation and relaxation. To unveil some of the information encoded in these faint outer halo regions, we study the stellar outskirts of galaxies selected from a fully hydrodynamical high-resolution cosmological simulation, called Magneticum. We find that the density profiles of the outer stellar halos of galaxies over a broad mass range can be well described by an Einasto profile. For a fixed total mass range, the free parameters of the Einasto fits are closely correlated. Galaxies which had more (dry) merger events tend to have lesser curved outer stellar halos, however, we find no indication that the amount of curvature is correlated with galaxy morphology. The Einasto-like shape of the outer stellar halo densities can also explain the observed differences between the Milky Way and Andromeda outer stellar halos.


Author(s):  
James R Allison

Abstract Evolution of the cosmic star formation rate (SFR) and molecular mass density is expected to be matched by a similarly strong evolution of the fraction of atomic hydrogen (H i) in the cold neutral medium (CNM). We use results from a recent commissioning survey for intervening 21-cm absorbers with the Australian Square Kilometre Array Pathfinder (ASKAP) to construct a Bayesian statistical model of the NHI-weighted harmonic mean spin temperature (Ts) at redshifts between z = 0.37 and 1.0. We find that Ts ≤ 274 K with 95 per cent probability, suggesting that at these redshifts the typical H i gas in galaxies at equivalent DLA column densities may be colder than the Milky Way interstellar medium (Ts, MW ∼ 300 K). This result is consistent with an evolving CNM fraction that mirrors the molecular gas towards the peak in SFR at z ∼ 2. We expect that future surveys for H i 21-cm absorption with the current SKA pathfinder telescopes will be able to provide constraints on the CNM fraction that are an order of magnitude greater than presented here.


2020 ◽  
Vol 637 ◽  
pp. A8 ◽  
Author(s):  
In Sung Jang ◽  
Roelof S. de Jong ◽  
Benne W. Holwerda ◽  
Antonela Monachesi ◽  
Eric F. Bell ◽  
...  

Models of galaxy formation in a cosmological context predict that massive disk galaxies should have structured extended stellar halos. Recent studies in integrated light, however, report that a few galaxies, including the nearby disk galaxy M 101, have no measurable stellar halos to the detection limit. We aim to quantify the stellar content and structure of M 101’s outskirts by resolving its stars. We present the photometry of its stars based on deep F606W and F814W images taken with Hubble Space Telescope (HST) as part of the GHOSTS survey. The HST fields are placed along the east and west sides of M 101 out to galactocentric distance (R) of ∼70 kpc. The constructed color-magnitude diagrams of stars reach down to two magnitudes below the tip of the red giant branch. We derived radial number density profiles of the bright red giant branch (RGB) stars. The mean color of the RGB stars at R ∼ 40−60 kpc is similar to those of metal-poor globular clusters in the Milky Way. We also derived radial surface brightness profiles using the public image data provided by the Dragonfly team. Both the radial number density and surface brightness profiles were converted to radial mass density profiles and combined. We find that the mass density profiles show a weak upturn at the very outer region, where surface brightness is as faint as μg ≈ 33 mag arcsec−2. An exponential disk + power-law halo model on the mass density profiles finds the total stellar halo mass of Mhalo = 8.2−2.2+3.5 × 107 M⊙. The total stellar halo mass does not exceed Mhalo = 3.2 × 108 M⊙ when strongly truncated disk models are considered. In combining the halo mass with the total stellar mass of M 101, we obtain the stellar halo mass fraction of Mhalo/Mgal = 0.20−0.08+0.10% with an upper limit of 0.78%. We compare the halo properties of M 101 with those of six GHOSTS survey galaxies as well as the Milky Way and M 31 and find that M 101 has an anemic stellar halo similar to the Milky Way.


2020 ◽  
Vol 498 (2) ◽  
pp. 1710-1725
Author(s):  
M Palla ◽  
F Matteucci ◽  
E Spitoni ◽  
F Vincenzo ◽  
V Grisoni

ABSTRACT We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyse abundance gradients of O, N, Fe, and Mg along the thin disc as well as the [Mg/Fe] versus [Fe/H] relations and the metallicity distribution functions at different Galactocentric distances. We run several models starting from the two-infall paradigm, assuming that the thick and thin discs formed by means of two different infall episodes, and we explore several physical parameters, such as radial gas flows, variable efficiency of star formation, different times for the maximum infall on to the disc, different distributions of the total surface mass density of the thick disc, and enriched gas infall. Our best model suggests that radial gas flows and variable efficiency of star formation should be acting together with the inside-out mechanism for the thin disc formation. The time-scale for maximum infall on to the thin disc, which determines the gap between the formation of the two discs, should be tmax ≃ 3.25 Gyr. The thick disc should have an exponential, small-scale length density profile and gas infall on the inner thin disc should be enriched. We also compute the evolution of Gaia–Enceladus system and study the effects of possible interactions with the thick and thin discs. We conclude that the gas lost by Enceladus or even part of it could have been responsible for the formation of the thick disc but not the thin disc.


Author(s):  
Yingtian Chen ◽  
Hui Li ◽  
Mark Vogelsberger

Abstract We perform a suite of hydrodynamic simulations to investigate how initial density profiles of giant molecular clouds (GMCs) affect their subsequent evolution. We find that the star formation duration and integrated star formation efficiency of the whole clouds are not sensitive to the choice of different profiles but are mainly controlled by the interplay between gravitational collapse and stellar feedback. Despite this similarity, GMCs with different profiles show dramatically different modes of star formation. For shallower profiles, GMCs first fragment into many self-gravitation cores and form sub-clusters that distributed throughout the entire clouds. These sub-clusters are later assembled ‘hierarchically’ to central clusters. In contrast, for steeper profiles, a massive cluster is quickly formed at the center of the cloud and then gradually grows its mass via gas accretion. Consequently, central clusters that emerged from clouds with shallower profiles are less massive and show less rotation than those with the steeper profiles. This is because 1) a significant fraction of mass and angular momentum in shallower profiles is stored in the orbital motion of the sub-clusters that are not able to merge into the central clusters 2) frequent hierarchical mergers in the shallower profiles lead to further losses of mass and angular momentum via violent relaxation and tidal disruption. Encouragingly, the degree of cluster rotations in steeper profiles is consistent with recent observations of young and intermediate-age clusters. We speculate that rotating globular clusters are likely formed via an ‘accretion’ mode from centrally-concentrated clouds in the early Universe.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.


2017 ◽  
Vol 470 (1) ◽  
pp. 522-538 ◽  
Author(s):  
Emily Sandford ◽  
Andreas H. W. Küpper ◽  
Kathryn V. Johnston ◽  
Jürg Diemand

Abstract Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream ‘disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (i) the thinness of the stream on-sky, (ii) the symmetry of the leading and trailing tails and (iii) the deviation of the tails from a low-order polynomial path on-sky (‘path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ∼30–80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.


Sign in / Sign up

Export Citation Format

Share Document