redshift galaxies
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 47)

H-INDEX

65
(FIVE YEARS 6)

2021 ◽  
Vol 923 (1) ◽  
pp. 5
Author(s):  
Yuma Sugahara ◽  
Akio K. Inoue ◽  
Takuya Hashimoto ◽  
Satoshi Yamanaka ◽  
Seiji Fujimoto ◽  
...  

Abstract We present new Atacama Large Millimeter/submillimeter Array Band 7 observational results of a Lyman-break galaxy at z = 7.15, B14-65666 (“Big Three Dragons”), which is an object detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission during the epoch of reionization. Our targets are the [N ii] 122 μm fine-structure emission line and the underlying 120 μm dust continuum. The dust continuum is detected with a ∼19σ significance. From far-infrared spectral energy distribution sampled at 90, 120, and 160 μm, we obtain a best-fit dust temperature of 40 K (79 K) and an infrared luminosity of log 10 ( L IR / L ⊙ ) = 11.6 (12.1) at the emissivity index β = 2.0 (1.0). The [N ii] 122 μm line is not detected. The 3σ upper limit of the [N ii] luminosity is 8.1 × 107 L ⊙. From the [N ii], [O iii], and [C ii] line luminosities, we use the Cloudy photoionization code to estimate nebular parameters as functions of metallicity. If the metallicity of the galaxy is high (Z > 0.4 Z ⊙), the ionization parameter and hydrogen density are log 10 U ≃ − 2.7 ± 0.1 and n H ≃ 50–250 cm−3, respectively, which are comparable to those measured in low-redshift galaxies. The nitrogen-to-oxygen abundance ratio, N/O, is constrained to be subsolar. At Z < 0.4 Z ⊙, the allowed U drastically increases as the assumed metallicity decreases. For high ionization parameters, the N/O constraint becomes weak. Finally, our Cloudy models predict the location of B14-65666 on the BPT diagram, thereby allowing a comparison with low-redshift galaxies.


2021 ◽  
Vol 921 (2) ◽  
pp. 130
Author(s):  
Skarleth M. Motiño Flores ◽  
Tommy Wiklind ◽  
Rafael T. Eufrasio

Abstract Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies and the physical processes at work. We present a sample of 11 potential local analogs to high-z (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at 1.5 < z < 4. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR), and star formation histories (SFHs) of the sample of LAHz galaxies. We employ Bayesian analysis to characterize the dust using two-component blackbody models. Using the Lightning package, we fit the spectral energy distribution of the LAHz galaxies over the far-UV−far-infrared wavelength range and derive the SFH in five time steps up to a look-back time of 13.3 Gyr. Of the 11 LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages ≳1 Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gasdynamics role in driving star formation.


2021 ◽  
Vol 922 (1) ◽  
pp. 12
Author(s):  
Jessie Hirtenstein ◽  
Tucker Jones ◽  
Ryan L. Sanders ◽  
Crystal L. Martin ◽  
M. C. Cooper ◽  
...  

Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze Hα+[N ii], [S ii], and [S iii] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii]/Hβ versus [N ii]/Hα Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the Hα flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2σ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α-enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.


2021 ◽  
Vol 916 (1) ◽  
pp. 4
Author(s):  
C. Tohill ◽  
L. Ferreira ◽  
C. J. Conselice ◽  
S. P. Bamford ◽  
F. Ferrari

Author(s):  
S. F. Sánchez ◽  
C. J. Walcher ◽  
C. Lopez-Cobá ◽  
J. K. Barrera-Ballesteros ◽  
A. Mejía-Narváez ◽  
...  

Our understanding of the structure, composition and evolution of galaxies hasstrongly improved in the last decades, mostly due to new results based on large spectro-scopic and imaging surveys. In particular, the nature of ionized gas, its ionization mech-anisms, its relation with the stellar properties and chemical composition, the existence ofscaling relations that describe the cycle between stars and gas, and the corresponding evo-lution patterns have been widely explored and described. More recently, the introduction ofadditional techniques, in particular integral field spectroscopy, and their use in large galaxysurveys, have forced us to re-interpret most of those recent results from a spatially resolvedperspective. This review is aimed to complement recent efforts to compile and summarizethis change of paradigm in the interpretation of galaxy evolution. To this end we replicatepublished results, and present novel ones, based on the largest compilation of IFS data ofgalaxies in the nearby universe to date.


2021 ◽  
Vol 504 (1) ◽  
pp. 723-730
Author(s):  
Shengqi Yang ◽  
Adam Lidz ◽  
Gergö Popping

ABSTRACT The [O iii] 88 $\mu$m fine-structure emission line has been detected into the Epoch of Reionization (EoR) from star-forming galaxies at redshifts 6 &lt; z ≲ 9 with ALMA. These measurements provide valuable information regarding the properties of the interstellar medium (ISM) in the highest redshift galaxies discovered thus far. The [O iii] 88 $\mu$m line observations leave, however, a degeneracy between the gas density and metallicity in these systems. Here, we quantify the prospects for breaking this degeneracy using future ALMA observations of the [O iii] 52 $\mu$m line. Among the current set of 10 [O iii] 88 $\mu$m emitters at 6 &lt; z ≲ 9, we forecast 52 $\mu$m detections (at 6σ) in SXDF-NB1006-2, B14-6566, J0217-0208, and J1211-0118 within on-source observing times of 2–10 h, provided their gas densities are larger than about nH ≳ 102–103 cm−3. Other targets generally require much longer integration times for a 6σ detection. Either successful detections of the 52 $\mu$m line or reliable upper limits will lead to significantly tighter constraints on ISM parameters. The forecasted improvements are as large as ∼3 dex in gas density and ∼1 dex in metallicity for some regions of parameter space. We suggest SXDF-NB1006-2 as a promising first target for 52 $\mu$m line measurements. We discuss how such measurements will help in understanding the mass–metallicity relationship during the EoR.


2021 ◽  
Vol 910 (2) ◽  
pp. 89
Author(s):  
Anne D. Burnham ◽  
Caitlin M. Casey ◽  
Jorge A. Zavala ◽  
Sinclaire M. Manning ◽  
Justin S. Spilker ◽  
...  

2021 ◽  
Vol 909 (1) ◽  
pp. 56
Author(s):  
Daizhong Liu ◽  
Emanuele Daddi ◽  
Eva Schinnerer ◽  
Toshiki Saito ◽  
Adam Leroy ◽  
...  

2021 ◽  
Vol 908 (2) ◽  
pp. 121
Author(s):  
Debra Meloy Elmegreen ◽  
Bruce G. Elmegreen ◽  
Bradley C. Whitmore ◽  
Rupali Chandar ◽  
Daniela Calzetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document