Longitudinal Dietary Trajectories from Preconception to Mid-Childhood in Women and Children from the Southampton Women’s Survey: A Group Based Trajectory Modelling Approach.

Author(s):  
Kathryn Dalrymple
2020 ◽  
Author(s):  
Mike Burton ◽  
Catherine Hayer ◽  
Giuseppe La Spina

<p>The paroxysmal eruptions of Stromboli in July and August 2019 highlighted with stark clarity the risks associated with visiting the summit of this remarkable volcano. It is an imperative for the volcanological community to recognise signals which precede such paroxysms, with the aim of maximising the warning time before an eruption. The common interpretation of the process driving paroxysms is that a volume of buoyant magma rises from depth, degassing in closed-system. The ascent is rapid, from 10 km depth to the surface in a few hours. This rapid ascent produces a kinetic limit to crystal growth, reflected in the ‘blonde’ colour of the eruption products. Closed-system degassing leads to an overpressure in the rising slug, which helps lift magma in the conduit, pressurising also the shallow system.</p><p>The gas plume produced by the 28 August 2019 eruption was observed approximately 2 hours after eruption by the orbiting TROPOMI imaging spectrometer aboard Sentinel-5P. Using the Plume Trajectory modelling approach, we have reconstructed a time series of SO<sub>2</sub> flux associated with the explosion.  This reveals no clear precursor in SO<sub>2</sub> emissions, but our temporal resolution is limited to 20-30 minutes. A total SO<sub>2</sub> mass of 360 tonnes was quantified.</p><p>We can use this SO<sub>2</sub> mass together with previously measured gas compositions of explosive gas emissions to quantify the total mass of gas at explosion and an estimate of the magma mass required to produce this SO<sub>2</sub> mass. Together, these provide the initial conditions required to apply a magma ascent model in which we calculate the overpressure of the slug during its ascent. This provides a basis for determining the shallow deformation produced by both the increase in magma level and over-pressurised gas slug, and this may be helpful in constraining the timescales of precursory deformation.</p><p> </p><p> </p>


2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


Sign in / Sign up

Export Citation Format

Share Document