Long distance two-party quantum crypto made simple

2012 ◽  
Vol 12 (5&6) ◽  
pp. 448-460
Author(s):  
Iordanis Kerenidis ◽  
Stephanie Wehner

Any two-party cryptographic primitive can be implemented using quantum communication under the assumption that it is difficult to store a large number of quantum states perfectly. However, achieving reliable quantum communication over long distances remains a difficult problem. Here, we consider a large network of nodes with only neighboring quantum links. We exploit properties of this cloud of nodes to enable any two nodes to achieve security even if they are not directly connected. Our results are based on techniques from classical cryptography and do not resort to technologically difficult procedures like entanglement swapping. More precisely, we show that oblivious transfer can be achieved in such a network if and only if there exists a path in the network between the sender and the receiver along which all nodes are honest. Finally, we show that useful notions of security can still be achieved when we relax the assumption of an honest path. For example, we show that we can combine our protocol for oblivious transfer with computational assumptions such that we obtain security if either there exists an honest path, or, as a backup, at least the adversary cannot solve a computational problem.


2013 ◽  
Vol 302 ◽  
pp. 607-611
Author(s):  
Zhen Zhu Zhou ◽  
Wei He ◽  
Chun Dan Zhu ◽  
Ying Wang

We discuss a long-distance quantum communication system based on entangled photon pairs, which apply entanglement as its fundamental resource. For distances longer than the coherence length of a counterpart noisy quantum channel, the fidelity of transmission is ordinarily so low that standard purification processes are not applicable. The quantum repeater stretches the length of the entangled photon pairs. And the high fidelity entanglement of photons between sender and receiver is obtained by entanglement purification and entanglement swapping. We compare the nested repeater with the common repeater and show that it outperforms the latter, which is built an EPR pair in less time.



2012 ◽  
Vol 12 (7&8) ◽  
pp. 609-619
Author(s):  
Jamie Sikora

Oblivious transfer is the cryptographic primitive where Alice sends one of two bits to Bob but is oblivious to the bit received. Using quantum communication, we can build oblivious transfer protocols with security provably better than any protocol built using classical communication. However, with imperfect apparatus, one needs to consider other attacks. In this paper, we present an oblivious transfer protocol which is impervious to lost messages.



2013 ◽  
Vol 88 (2) ◽  
Author(s):  
Aeysha Khalique ◽  
Wolfgang Tittel ◽  
Barry C. Sanders




2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Beatrice Da Lio ◽  
Daniele Cozzolino ◽  
Nicola Biagi ◽  
Yunhong Ding ◽  
Karsten Rottwitt ◽  
...  

AbstractQuantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2-km-long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of a secret key rate.



Author(s):  
C. W. Chou ◽  
S. V. Polyakov ◽  
D. Felinto ◽  
H. de Riedmatten ◽  
S. J. van Enk ◽  
...  


Author(s):  
Linshu Li ◽  
Sreraman Muralidharan ◽  
Chang-Ling Zou ◽  
Victor V. Albert ◽  
Jungsang Kim ◽  
...  


2008 ◽  
Vol 8 (5) ◽  
pp. 468-488
Author(s):  
U. Dorner ◽  
A. Klein ◽  
D. Jaksch

We study a quantum repeater which is based on decoherence free quantum gates recently proposed by Klein {\it et al.} [Phys. Rev. A, {\bf 73}, 012332 (2006)]. A number of operations on the decoherence free subspace in this scheme makes use of an ancilla qubit, which undergoes dephasing and thus introduces decoherence to the system. We examine how this decoherence affects entanglement swapping and purification as well as the performance of a quantum repeater. We compare the decoherence free quantum repeater with a quantum repeater based on qubits that are subject to decoherence and show that it outperforms the latter when decoherence due to long waiting times of conventional qubits becomes significant. Thus, a quantum repeater based on decoherence free subspaces is a possibility to greatly improve quantum communication over long or even intercontinental distances.



2001 ◽  
Vol 1 (3) ◽  
pp. 87-88
Author(s):  
P Kok ◽  
H Lee ◽  
N Cerf ◽  
J Dowling

Perspective



Sign in / Sign up

Export Citation Format

Share Document