Reduced space-time and time costs Ising dislocation codes and arbitrary ancillas

2015 ◽  
Vol 15 (11&12) ◽  
pp. 962-986
Author(s):  
Matthew B. Hastings ◽  
A. Geller

We propose two distinct methods of improving quantum computing protocols based on surface codes. First, we analyze the use of dislocations instead of holes to produce logical qubits, potentially reducing spacetime volume required. Dislocations\cite{dis2,dis} induce defects which, in many respects, behave like Majorana quasi-particles. We construct circuits to implement these codes and present fault-tolerant measurement methods for these and other defects which may reduce spatial overhead. One advantage of these codes is that Hadamard gates take exactly $0$ time to implement. We numerically study the performance of these codes using a minimum weight and a greedy decoder using finite-size scaling. Second, we consider state injection of arbitrary ancillas to produce arbitrary rotations. This avoids the logarithmic (in precision) overhead in online cost required if $T$ gates are used to synthesize arbitrary rotations. While this has been considered before\cite{ancilla}, we consider also the parallel performance of this protocol. Arbitrary ancilla injection leads to a probabilistic protocol in which there is a constant chance of success on each round; we use an amortized analysis to show that even in a parallel setting this leads to only a constant factor slowdown as opposed to the logarithmic slowdown that might be expected naively.

Author(s):  
Václav Blažej ◽  
Pratibha Choudhary ◽  
Dušan Knop ◽  
Jan Matyáš Křišt’an ◽  
Ondřej Suchý ◽  
...  

AbstractConsider a vertex-weighted graph G with a source s and a target t. Tracking Paths requires finding a minimum weight set of vertices (trackers) such that the sequence of trackers in each path from s to t is unique. In this work, we derive a factor 66-approximation algorithm for Tracking Paths in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related r-Fault Tolerant Feedback Vertex Set problem. There, for a fixed integer r and a given vertex-weighted graph G, the task is to find a minimum weight set of vertices intersecting every cycle of G in at least $$r+1$$ r + 1 vertices. We give a factor $$\mathcal {O}(r^2)$$ O ( r 2 ) approximation algorithm for r-Fault Tolerant Feedback Vertex Set if r is a constant.


1982 ◽  
Vol 21 ◽  
Author(s):  
G. v. Gehlen

ABSTRACTFinite-size scaling is applied to the Hamiltonian version of the asymmetric Z3-Potts model. Results for the phase boundary of the commensurate region and for the corresponding critical index ν are presented. It is argued that there is no Lifshitz point, the incommensurate phase extending down to small values of the asymmetry parameter.


2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.


2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Sign in / Sign up

Export Citation Format

Share Document