On The Phase Structure of the Asymmetric Three-State Potts Model

1982 ◽  
Vol 21 ◽  
Author(s):  
G. v. Gehlen

ABSTRACTFinite-size scaling is applied to the Hamiltonian version of the asymmetric Z3-Potts model. Results for the phase boundary of the commensurate region and for the corresponding critical index ν are presented. It is argued that there is no Lifshitz point, the incommensurate phase extending down to small values of the asymmetry parameter.

2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.


1990 ◽  
Vol 59 (5-6) ◽  
pp. 1397-1429 ◽  
Author(s):  
M. Fukugita ◽  
H. Mino ◽  
M. Okawa ◽  
A. Ukawa

2019 ◽  
Vol 2019 (9) ◽  
Author(s):  
Kimihiko Fukushima ◽  
Kazumitsu Sakai

Abstract A crossing probability for the critical four-state Potts model on an $L\times M$ rectangle on a square lattice is numerically studied. The crossing probability here denotes the probability that spin clusters cross from one side of the boundary to the other. First, by employing a Monte Carlo method, we calculate the fractal dimension of a spin cluster interface with a fluctuating boundary condition. By comparison of the fractal dimension with that of the Schramm–Loewner evolution (SLE), we numerically confirm that the interface can be described by the SLE with $\kappa=4$, as predicted in the scaling limit. Then, we compute the crossing probability of this spin cluster interface for various system sizes and aspect ratios. Furthermore, comparing with the analytical results for the scaling limit, which have been previously obtained by a combination of the SLE and conformal field theory, we numerically find that the crossing probability exhibits a logarithmic correction ${\sim} 1/\log(L M)$ to the finite-size scaling.


1989 ◽  
Vol 40 (1) ◽  
pp. 854-857 ◽  
Author(s):  
Chin-Kun Hu ◽  
Chi-Ning Chen

Sign in / Sign up

Export Citation Format

Share Document