scholarly journals Nucleation and Structural Identification in Gold Particles of High Aspect Ratios Developed through Mechanistic Approach

Author(s):  
Mubarak Ali ◽  
I-Nan Lin

<p><a>A precise structure of colloidal particles is discussed here. Formation mechanism of nanoparticles and particles having geometrical shapes is discussed in a<b> </b>different way. Dimensional regularity of such nanoparticles and particles gives new insight.</a> At electronically flat solution surface, two different zones found developing tiny-shaped particles in less and more elongation of atoms. Tiny-shaped particles in less elongation of atoms nucleate particles of one-dimensional (1D) shapes and those in more elongation of atoms nucleate multi-dimensional (MD) shapes. To assemble at a common point forming at centre of concave meniscus on solution surface, structures of smooth elements at electronically decreasing level solution surface deal with exertion of force in immersing <a></a><a>manner. In addition to orientation of an electron and the position of its atom, s</a>tyle of energy knot clamping electron also varies exertion of force on it. Particles of geometrical shapes show different structures in their 1D and MD shapes. By identification of structure, a mechanism of photon reversion is disclosed. In selected area patterns of particles, experimental proof of printing spots of reverted force of photons reflected from different electronic structures of elongated atoms validates that photons are not necessarily carried by the electrons.</p>

2020 ◽  
Author(s):  
Mubarak Ali ◽  
I-Nan Lin

<a>A precise structure of colloidal particles is being discussed here. Formation mechanism of nanoparticles and particles having geometrical shapes is discussed in a<b> </b>different way. Dimensional regularity of such nanoparticles and particles gives new insight.</a> At electronically flat solution surface, two different zones have been found developing tiny-shaped particles in less elongation of atoms as well as more elongation of atoms. Tiny-shaped particles in less elongation of atoms nucleate particles of one-dimensional (1D) shapes and those in more elongation of atoms nucleate multi-dimensional (MD) shapes. To assemble at a common point forming at the centre of concave meniscus on solution surface, structures of smooth elements at electronically decreasing level solution surface deal with exertion of force in immersing <a></a><a>manner. In addition to the orientation of an electron and the position of its atom, s</a>tyle of energy knot clamping electron also varies exertion of force on it. Particles of geometrical shapes show different structures in their 1D and MD shapes. By identification of a structure, a mechanism of photon reversion is disclosed. In the selected area patterns of particles, experimental proof of printing spots of reverted force of photons reflected from different electronic structures of elongated atoms validates that photons are not necessarily carried by the electrons.


2020 ◽  
Author(s):  
Mubarak Ali ◽  
I-Nan Lin

<p>A structural identification in different geometrical shapes of gold particles is presented here. Nucleation mechanisms of particles having geometrical shapes are discussed here, which have never been reported before. Dimensional regularity of particles in geometrical shapes incites a new insight. At electronically flat solution surface, different zones have been found dealing with the developing tiny-shaped particles in less elongation of atoms and more elongation of atoms. Tiny-shaped particles in less elongation of atoms nucleate particles of one-dimensional (1D) shapes due to developing in a zone consisting of regions rearward to north-pole at solution surface. Tiny-shaped particles in more elongation of atoms nucleate multi-dimensional (MD) shapes due to developing in a zone consisting of east-west regions at solution surface. To assemble at a common point forming at the centre of concave meniscus, structures of smooth elements at electronically decreasing level solution surface experience force in immersing format. A force exerting in the immersing format is related to the simultaneous actions of four forces to a structure of smooth element coming to assemble. In addition to the acquired orientation of an electron and the position of its atom at solution surface, a manner of energy knot clamping to electron in an atom also varies exertion of force for it. Particles of geometrical shapes show different structures in 1D and MD shapes. On identifying structure, a mechanism of photon reversion is disclosed. In the selected area patterns of particles, printing spots of reverted force in photons reflected from the laterally orientated electrons of less and more elongated atoms validates that photons are not carried by the electrons, so it is a photon reflection instead of an electron diffraction.<br></p>


2020 ◽  
Author(s):  
Mubarak Ali ◽  
I-Nan Lin

<p>A structural identification in different geometrical shapes of gold particles is presented here. Nucleation mechanisms of particles having geometrical shapes are discussed here, which have never been reported before. Dimensional regularity of particles in geometrical shapes incites a new insight. At electronically flat solution surface, different zones have been found dealing with the developing tiny-shaped particles in less elongation of atoms and more elongation of atoms. Tiny-shaped particles in less elongation of atoms nucleate particles of one-dimensional (1D) shapes due to developing in a zone consisting of regions rearward to north-pole at solution surface. Tiny-shaped particles in more elongation of atoms nucleate multi-dimensional (MD) shapes due to developing in a zone consisting of east-west regions at solution surface. To assemble at a common point forming at the centre of concave meniscus, structures of smooth elements at electronically decreasing level solution surface experience force in immersing format. A force exerting in the immersing format is related to the simultaneous actions of four forces to a structure of smooth element coming to assemble. In addition to the acquired orientation of an electron and the position of its atom at solution surface, a manner of energy knot clamping to electron in an atom also varies exertion of force for it. Particles of geometrical shapes show different structures in 1D and MD shapes. On identifying structure, a mechanism of photon reversion is disclosed. In the selected area patterns of particles, printing spots of reverted force in photons reflected from the laterally orientated electrons of less and more elongated atoms validates that photons are not carried by the electrons, so it is a photon reflection instead of an electron diffraction.<br></p>


2020 ◽  
Author(s):  
Mubarak Ali ◽  
I-Nan Lin

<p><a>A structural identification in different geometrical shapes of gold particles is being discussed here. Nucleation mechanisms of different particles having geometrical shapes are presented here, which have never been reported before. Dimensional regularity in developed particles gives a new insight.</a> At electronically flat solution surface, two different zones have been found developing tiny-shaped particles in less elongation of atoms and more elongation of atoms. Tiny-shaped particles in less elongation of atoms nucleate particles of one-dimensional (1D) shapes as they developed in the regions covering mainly zone of solution surface belonging to rearward side of north-pole. Tiny-shaped particles in more elongation of atoms nucleate multi-dimensional (MD) shapes as they developed in the regions covering mainly zone of solution surface belonging to east-west poles. To assemble at a common point forming at the centre of concave meniscus, structures of smooth elements deal with exertion of force in immersing <a></a><a>manner at electronically decreasing level solution surface. A force exerting in immersing manner is related to the simultaneous action of four forces to a structure of smooth element coming to assemble. In addition to the orientation of an electron and the position of the atom on solution surface, manner </a>of energy knot clamping electron in an atom also varies exertion of force for it. Particles of geometrical shapes show different structures in their 1D and MD shapes. By identification of a structure, a mechanism of photon reversion is disclosed. In the selected area patterns of particles, experimental proof of printing spots of reverted force in photons reflected from different electronic structures of elongated atoms validates that photons are not necessarily carried by the electrons.</p>


Author(s):  
Mubarak Ali ◽  
I–Nan Lin ◽  
C.–J. Yeh

Developing particles of different geometric anisotropic shapes are the hot topic since decades as they guarantee some special features of properties not possible through other means. Again, controlling atoms to develop certain size and shape particle is a quite challenging job. In this study, gold particles of different shapes are developed via pulse-based electronphoton-solution interface process. Here, it is discussed that gold atoms under certain transition state amalgamated at solution surface to develop monolayer assembly around the light glow of electrons and photons, which is known in plasma, generating through flowing argon gas copper capillary, which is known in cathode. The rate of uplifting gold atoms to solution surface is controlled under the fixed optimized entrance of forced energy electron streams and photons of high forcing energy. Uplifting gold atoms dissociated on dissociation of precursor under the dissipating heat energy resulted by propagating photonic current through graphite rod immersed in the solution, which is known in anode. On the other hand, packets of nano shape energy resulted by the controlled tuned pulse protocol developing tiny particles of own shape by binding transition state atoms of compact monolayer assembly. At solution surface, adjusting atoms of monolayer tiny particle into one-dimensional arrays under the disconcerted lateral forces following by their elongation under uniformly exerted opposite poles forces. This results into convert them in a structure of smooth elements where adjacently placed electrons and those in the outer rings of elongated atoms inter-connecting side-to-side by introducing orientational-based stretching of clamped energy knots. Tiny sized particles developed their atoms of one-dimensional arrays in structure of smooth elements exert an immersing force at favorable side tips and where many such tiny particles around the light glow work as one unit for each case resulting into pack by inter-connecting at inside their common point to nucleate the shape of certain particle. Depending on the development zone of such tiny sized particles and their amount of simultaneous packing under naturally maintained orientations develop their different geometric anisotropic shaped particles. At fixed precursor concentration, increasing the process time results into develop particles of low aspect ratio. Under tuned parameters, developing mechanisms of particles of high aspect ratio exhibiting unprecedented features are discussed.


Author(s):  
Mubarak Ali ◽  
I –Nan Lin ◽  
C. –J. Yeh

Developing particles of various geometric anisotropic shapes are the hot topic since decades as they guarantee some special features of properties not possible through other means. Again, controlling atoms to develop certain size and shape particle is a quite challenging job. In this study, gold particles of different shapes are developed via pulse-based electronphoton-solution interface process. Here it is discussed that gold atoms while transition of cold state to re-crystallization state amalgamate at solution surface around the light glow to develop monolayer assembly. The rate of uplifting gold atoms to solution surface is as per the reaction of entering force of electron streams and photons of varying wavelength achieved under optimized process conditions. Prior to uplifting of gold atoms, they dissociated from the precursor through absorption of heat energy given to solution by the immersed graphite rod. On the other hand, packets of nano shape energy developing tiny particles of own shape on binding their energy to energy knots clamping to electron states of atoms of monolayer assembly under the achieved transition state. Simultaneously, atoms of developed monolayer tiny particles start elongating at both sides to centre under the influence of influencing surface format force where electrons deal adjacent diffusion under orientational-based stretching of clamping energy knots resulting into transform one-dimensional arrays of atoms into structure of smooth elements where tip of each one of them facing the centre of light glow under the increased level of force resulting into pack as one unit. Due to the feature of bipolar pulse having unity ratio of pulse OFF to ON time, each tiny particle is first developed in shape like two joint triangles. As adjacent connection between their two atoms dealing force of opposite pole, they first separated into two equal triangular-shaped tiny particles under the application of surface format force. They directed as one unit from the regions of formation to pack at already allocated unfilled regions to develop certain shape particle under the force as per their gained feature. Structures of smooth elements of triangular-shaped tiny particles in the reach of packing at centre of light glow further elongate while impinging electron streams. Structures of smooth element further shape and acquire smoothness under the forcing energy of high density travelling photons. Depending on the zone of development of tiny particles along with their number of together packing develop various geometric anisotropic shaped particles. At fixed precursor concentration, increasing the process time results into develop particles of low aspect ratio. Here under tuned parameters, we locate developing mechanisms of particles of high aspect ratio exhibiting unprecedented features.


Author(s):  
Mubarak Ali ◽  
I –Nan Lin ◽  
C.–J. Yeh

Developing particles of different anisotropic shapes are the hot topic since decades as they guarantee some special features of properties not possible through other means. Again, controlling atoms to develop certain size and shape particle is a quite challenging job. In this study, gold particles of different shapes are developed via pulse-based electronphoton-solution interface process. Gold atoms of certain transition state develop monolayer assembly at solution surface around the light glow (known in argon plasma) being generated at bottom of copper capillary (known in cathode). The rate of uplifting gold atoms to solution surface is being controlled by forcing energy (travelling photons) pursuing electrons and high energy photons (in high density) entering to solution. Gold atoms dissociated from the precursor under dissipating heat energy into the solution supplied under propagating photons characteristic current through immersed graphite rod (known in anode). Placing packets of nano shape energy of tuned pulse protocol over compact monolayer assembly comprising transition state atoms develop tiny-sized particles of formed shape. On separation of joint tiny particles into two equilateral triangular-shaped tiny particles, exerting forces of surface format elongate atoms of one-dimensional arrays converting them into structures of smooth elements. Due to immersing level of force, such tiny-shaped particles pack from different zones at centre of light glow where they assembled structures of smooth elements for developing mono-layers of different shapes of particles. Developing one-dimensional particles deal assembling of structures of smooth elements of packing tiny-shaped particles from nearly rearward zones of reflection of north-south poles, whereas, developing multi-dimensional particles deal assembling of structures of smooth elements of packing tiny-shaped particles from the east-west poles and near regions. Depending on the number of assembled structures of smooth elements at point of nucleation, packing of tiny-shaped particles from different zones develop different shapes of the anisotropic particles. At fixed precursor concentration, increasing the process time results into develop particles of low aspect ratio. Under tuned parameters, developing mechanisms of particles exhibiting unprecedented features are discussed.


Author(s):  
Mubarak Ali ◽  
I –Nan Lin ◽  
C. –J. Yeh

Developing particles of various geometric anisotropic shapes are the hot topic since decades as they guarantee some special features of properties not possible through other means. Again, controlling atoms to develop certain size and shape particle is a quite challenging job. In this study, gold particles of different shapes are developed via pulse-based electronphoton-solution interface process. Here, it is discussed that gold atoms while transition of cold state to re-crystallization state amalgamate at solution surface around the light glow to develop monolayer assembly. The rate of uplifting gold atoms to solution surface is as per the reaction of entering force of electron streams and photons of varying wavelength achieved under optimized process conditions. Prior to uplifting of gold atoms, they dissociated from the precursor through absorption of heat energy given to solution by the immersed graphite rod. On the other hand, packets of nano shape energy developing tiny particles of own shape on binding their energy to energy knots clamping to electron states of atoms of monolayer assembly under the achieved transition state. Simultaneously, atoms of developed monolayer tiny particles start elongating to both sides from their centers under the influence of working surface format force at level of solution surface where electrons deal adjacent placement under orientational-based stretching of clamping energy knots resulting into transform one-dimensional arrays of atoms into structure of smooth elements where tip of each one faces the centre of light glow under their immersing force resulting into pack as one unit. Due to the feature of bipolar pulse having unity ratio of pulse OFF to ON time, each tiny particle is first developed in shape like two joint triangles. As adjacent connection between their two atoms dealing force of opposite pole at perturbed axis, they first separated into two equal triangular-shaped tiny particles under the application of surface format force. They directed as one unit from the regions of formation to pack at already allocated unfilled regions to develop certain shape particle under the force as per their rate of development in different zones of solution surface. Structures of smooth elements of triangular-shaped tiny particles in the reach of packing at centre of light glow further elongate while impinging electron streams at fixed angle. Structures of smooth elements further shape and acquire smoothness under the forcing energy of high density travelling photons at the instant of (on) packing. Depending on the zone of development of tiny particles along with their number of together packing develop various geometric anisotropic shaped particles. At fixed precursor concentration, increasing the process time results into develop particles of low aspect ratio. Under tuned parameters, developing mechanisms of particles of high aspect ratio exhibiting unprecedented features are located.


Sign in / Sign up

Export Citation Format

Share Document