Coordinated Action of NRPS, Baeyer-Villiger Monooxygenase, and Methyltransferase Ensures the Economical Biosynthesis of Bohemamines in Streptomyces sp. CB02009

Author(s):  
Ling Liu ◽  
Sainan Li ◽  
Runze Sun ◽  
Xiangjing Qin ◽  
Jianhua Ju ◽  
...  

<p> Bohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unprecedented methyl groups. Herein we report the activation of BHMs biosynthesis in <i>Streptomyces </i>sp. CB02009 using a ribosome engineering approach. Identification and characterization of the <i>bhm</i> gene cluster reveals a coordinated action of nonribosomal peptide synthetase BhmJ, Baeyer-villiger monooxygenase BhmK and methyltransferase BhmG for BHMs biosynthesis. BhmG is responsible for the C-methylation on C-7, while the C-9 methyl group is from a non-proteinogenic amino acid (2<i>S</i>,5<i>S</i>)-5-methylproline, required for BHMs production in three model <i>Streptomyces </i>hosts. Our study shed light on the intricate interaction of BhmJ/BhmK/BhmG for the economical biosynthesis of BHMs in their native producer, and also unraveled that BhmJ and BhmK are competent biocatalysts in <i>S</i><i>treptomyce </i><i>albus</i>.</p>

Author(s):  
Ling Liu ◽  
Sainan Li ◽  
Runze Sun ◽  
Xiangjing Qin ◽  
Jianhua Ju ◽  
...  

<p> Bohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unprecedented methyl groups. Herein we report the activation of BHMs biosynthesis in <i>Streptomyces </i>sp. CB02009 using a ribosome engineering approach. Identification and characterization of the <i>bhm</i> gene cluster reveals a coordinated action of nonribosomal peptide synthetase BhmJ, Baeyer-villiger monooxygenase BhmK and methyltransferase BhmG for BHMs biosynthesis. BhmG is responsible for the C-methylation on C-7, while the C-9 methyl group is from a non-proteinogenic amino acid (2<i>S</i>,5<i>S</i>)-5-methylproline, required for BHMs production in three model <i>Streptomyces </i>hosts. Our study shed light on the intricate interaction of BhmJ/BhmK/BhmG for the economical biosynthesis of BHMs in their native producer, and also unraveled that BhmJ and BhmK are competent biocatalysts in <i>S</i><i>treptomyce </i><i>albus</i>.</p>


Biochimie ◽  
2011 ◽  
Vol 93 (9) ◽  
pp. 1401-1407 ◽  
Author(s):  
Liping Bai ◽  
Ming Chang ◽  
Junjie Shan ◽  
Rong Jiang ◽  
Yang Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6580
Author(s):  
Charlotte Beck ◽  
Tetiana Gren ◽  
Francisco Javier Ortiz-López ◽  
Tue Sparholt Jørgensen ◽  
Daniel Carretero-Molina ◽  
...  

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that “silent” biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3′-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


2015 ◽  
Vol 112 (48) ◽  
pp. 14829-14833 ◽  
Author(s):  
Aaron W. Fay ◽  
Jared A. Wiig ◽  
Chi Chung Lee ◽  
Yilin Hu

Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally “truncated” homologs of NifB from Methanosarcina acetivorans (NifBMa) and Methanobacterium thermoautotrophicum (NifBMt), which contain a SAM-binding domain at the N terminus but lack a domain toward the C terminus that shares homology with NifX, an accessory protein in M cluster biosynthesis. NifBMa and NifBMt are monomeric proteins containing a SAM-binding [Fe4S4] cluster (designated the SAM cluster) and a [Fe4S4]-like cluster pair (designated the K cluster) that can be processed into an [Fe8S9] precursor to the M cluster (designated the L cluster). Further, the K clusters in NifBMa and NifBMt can be converted to L clusters upon addition of SAM, which corresponds to their ability to heterologously donate L clusters to the biosynthetic machinery of A. vinelandii for further maturation into the M clusters. Perhaps even more excitingly, NifBMa and NifBMt can catalyze the removal of methyl group from SAM and the abstraction of hydrogen from this methyl group by 5′-deoxyadenosyl radical that initiates the radical-based incorporation of methyl-derived carbide into the M cluster. The successful identification of NifBMa and NifBMt as functional homologs of NifB not only enabled classification of a new subset of radical SAM methyltransferases that specialize in complex metallocluster assembly, but also provided a new tool for further characterization of the distinctive, NifB-catalyzed methyl transfer and conversion to an iron-bound carbide.


2006 ◽  
Vol 361 (1471) ◽  
pp. 1265-1274 ◽  
Author(s):  
Kate L.J Ellacott ◽  
Roger D Cone

A little more than a decade ago, the molecular basis of the lipostat was largely unknown. At that time, many laboratories were at work attempting to clone the genes encoding the obesity , diabetes , fatty , tubby and agouti loci, with the hope that identification of these obesity genes would help shed light on the process of energy homeostasis, appetite and energy expenditure. Characterization of obesity and diabetes elucidated the nature of the adipostatic hormone leptin and its receptor, respectively, while cloning of the agouti gene eventually led to the identification and characterization of one of the key neural systems upon which leptin acts to regulate intake and expenditure. In this review, we describe the neural circuitry known as the central melanocortin system and discuss the current understanding of its role in feeding and other processes involved in energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document