cluster biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 17)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 9 (8) ◽  
pp. 1609
Author(s):  
Liliya Horbal ◽  
Marc Stierhof ◽  
Anja Palusczak ◽  
Nikolas Eckert ◽  
Josef Zapp ◽  
...  

Targeted genome mining is an efficient method of biosynthetic gene cluster prioritization within constantly growing genome databases. Using two capreomycidine biosynthesis genes, alpha-ketoglutarate-dependent arginine beta-hydroxylase and pyridoxal-phosphate-dependent aminotransferase, we identified two types of clusters: one type containing both genes involved in the biosynthesis of the abovementioned moiety, and other clusters including only arginine hydroxylase. Detailed analysis of one of the clusters, the flk cluster from Streptomyces albus, led to the identification of a cyclic peptide that contains a rare D-capreomycidine moiety for the first time. The absence of the pyridoxal-phosphate-dependent aminotransferase gene in the flk cluster is compensated by the XNR_1347 gene in the S. albus genome, whose product is responsible for biosynthesis of the abovementioned nonproteinogenic amino acid. Herein, we report the structure of cyclofaulknamycin and the characteristics of its biosynthetic gene cluster, biosynthesis and bioactivity profile.


2021 ◽  
Author(s):  
Seyi Falekun ◽  
Jaime Sepulveda ◽  
Yasaman Jami-Alahmadi ◽  
Hahnbeom Park ◽  
James Wohlschlegel ◽  
...  

Plasmodium falciparum malaria parasites are early-diverging eukaryotes with many unusual metabolic adaptations. Understanding these adaptations will give insight into parasite evolution and unveil new parasite-specific drug targets. In contrast to human cells, the Plasmodium mitochondrion lacks type II fatty acid biosynthesis (FASII) enzymes yet curiously retains a divergent acyl carrier protein (mACP) incapable of modification by a 4-phosphopantetheine (Ppant) group required for canonical ACP function as the scaffold for fatty acid synthesis. We report that ligand-dependent knockdown of mACP expression is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from this lethal phenotype, suggesting a dominant dysfunction of the mitochondrial electron transport chain (ETC) followed by broader defects beyond the ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 cysteine desulfurase complex required for Fe-S cluster biosynthesis, and mACP knockdown causes loss of both Nfs1 and the Rieske Fe-S cluster protein in ETC Complex III. This work identifies Ppant-independent mACP as an essential mitochondrial adaptation in Plasmodium malaria parasites that appears to be a shared metabolic feature of Apicomplexan pathogens, including Toxoplasma and Babesia. This parasite-specific adaptation highlights the ancient, fundamental role of ACP in mitochondrial Fe-S cluster biogenesis and reveals an evolutionary driving force to retain this interaction with ACP independent of its eponymous function in fatty acid synthesis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3771
Author(s):  
Qin Li ◽  
Yongbing Li ◽  
Xiaohan Li ◽  
Sanfeng Chen

NifS and NifU (encoded by nifS and nifU) are generally dedicated to biogenesis of the nitrogenase Fe–S cluster in diazotrophs. However, nifS and nifU are not found in N2-fixing Paenibacillus strains, and the mechanisms involved in Fe–S cluster biosynthesis of nitrogenase is not clear. Here, we found that the genome of Paenibacillus polymyxa WLY78 contains the complete sufCDSUB operon, a partial sufC2D2B2 operon, a nifS-like gene, two nifU-like genes (nfuA-like and yutI), and two iscS genes. Deletion and complementation studies showed that the sufC, sufD, and sufB genes of the sufCDSUB operon, and nifS-like and yutI genes were involved in the Fe–S cluster biosynthesis of nitrogenase. Heterologous complementation studies demonstrated that the nifS-like gene of P. polymyxa WLY78 is interchangeable with Klebsiella oxytoca nifS, but P. polymyxa WLY78 SufCDB cannot be functionally replaced by K. oxytoca NifU. In addition, K. oxytoca nifU and Escherichia coli nfuA are able to complement the P. polymyxa WLY78 yutI mutant. Our findings thus indicate that the NifS-like and SufCDB proteins are the specific sulfur donor and the molecular scaffold, respectively, for the Fe–S cluster formation of nitrogenase in P. polymyxa WLY78. YutI can be an Fe–S cluster carrier involved in nitrogenase maturation in P. polymyxa WLY78.


2021 ◽  
Author(s):  
Xuanjun Feng ◽  
Huiling Han ◽  
Diana Bonea ◽  
Jie Liu ◽  
Wenhan Ying ◽  
...  

AbstractThe Arabidopsis SHORT AND SWOLLEN ROOT1 (SSR1) gene encodes a mitochondrial TPR domain-containing protein and was previously reported to function in maintaining mitochondria function. In a screen for suppressors of the short-root phenotype of the loss-of-function mutant ssr1-2, two mutations, sus1 and sus2 (suppressor of ssr1-2), were isolated. sus1 and sus2 result from G87D and T55M single amino acid substitution in HSCA2 (At5g09590) and ISU1 (At4g22220), both of which are core components in iron-sulfur cluster biosynthesis pathway in mitochondria (ISC). We here demonstrated that SSR1 displayed a strong chaperone-like activity and was able to enhance the binding of HSCA2 to ISU1, an essential step for the normal operation of ISC machinery. Accordingly, the enzymatic activities of several iron-sulfur proteins, the mitochondrial membrane potential and ATP content are reduced in ssr1-2. Interestingly, SSR1 appears to exist only in plant lineages, possibly conferring adaptive advantages on plant ISC machinery to environment.


Nature ◽  
2021 ◽  
Author(s):  
Jon S. Graf ◽  
Sina Schorn ◽  
Katharina Kitzinger ◽  
Soeren Ahmerkamp ◽  
Christian Woehle ◽  
...  

AbstractMitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe ‘Candidatus Azoamicus ciliaticola’, which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. ‘Candidatus A. ciliaticola’ contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron–sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. ‘Candidatus A. ciliaticola’ and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


2021 ◽  
Vol 7 (8) ◽  
pp. eabf0717
Author(s):  
Florian A. Schober ◽  
David Moore ◽  
Ilian Atanassov ◽  
Marco F. Moedas ◽  
Paula Clemente ◽  
...  

Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.


Author(s):  
Christa N. Molé ◽  
Kinjal Dave ◽  
Deborah L. Perlstein
Keyword(s):  

2020 ◽  
Author(s):  
Sakiko Sato ◽  
Yumeka Matsushima ◽  
Miaki Kanazawa ◽  
Naoyuki Tanaka ◽  
Takashi Fujishiro ◽  
...  

Inorganics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 55
Author(s):  
Batoul Srour ◽  
Sylvain Gervason ◽  
Beata Monfort ◽  
Benoit D’Autréaux

Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document