Host-Guest Interactions on Electrode Surfaces for Immobilization of Molecular Catalysts

Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.

2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf3989
Author(s):  
Jiong Wang ◽  
Shuo Dou ◽  
Xin Wang

Heterogeneous molecular catalysts based on transition metal complexes have received increasing attention for their potential application in electrochemical energy conversion. The structural tuning of first and second coordination spheres of complexes provides versatile strategies for optimizing the activities of heterogeneous molecular catalysts and appropriate model systems for investigating the mechanism of structural variations on the activity. In this review, we first discuss the variation of first spheres by tuning ligated atoms; afterward, the structural tuning of second spheres by appending adjacent metal centers, pendant groups, electron withdrawing/donating, and conjugating moieties on the ligands is elaborated. Overall, these structural tuning resulted in different impacts on the geometric and electronic configurations of complexes, and the improved activity is achieved through tuning the stability of chemisorbed reactants and the redox behaviors of immobilized complexes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mikhail V. Ryzhkov ◽  
Andrei N. Enyashin ◽  
Bernard Delley

Abstract Geometry optimization and the electronic structure calculations of Pu Z+ complexes (Z = 3–6) in water solution have been performed, within the framework of the DMol3 and Relativistic Discrete-Variational (RDV) methods. For the simulation of Pu Z+ molecular environment in aqueous solution we used 22 and 32 water molecules randomly distributed around cation. To model the effect of bulk solvent environment we used COSMO (Conductor-like Screening Model) potential for water (ε = 78.54). The obtained results showed that this approach allows the modeling of water dissociation and the formation of hydrolysis products. Our previously suggested scheme for the calculation of interaction energies between selected fragments of multi-molecular systems provides the quantitative estimation of the interaction strengths between plutonium in various oxidation states and each ligand in the first and second coordination shells in water solution.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1820
Author(s):  
Ekaterina V. Orlova

This research deals with the challenge of reducing banks’ credit risks associated with the insolvency of borrowing individuals. To solve this challenge, we propose a new approach, methodology and models for assessing individual creditworthiness, with additional data about borrowers’ digital footprints to implement comprehensive analysis and prediction of a borrower’s credit profile. We suggest a model for borrowers’ clustering based on the method of hierarchical clustering and the k-means method, which groups actual borrowers having similar creditworthiness and similar credit risks into homogeneous clusters. We also design the model for borrowers’ classification based on the stochastic gradient boosting (SGB) method, which reliably determines the cluster number and therefore the risk level for a new borrower. The developed models are the basis for decision making regarding the decision about lending value, interest rates and lending terms for each risk-homogeneous borrower’s group. The modified version of the methodology for assessing individual creditworthiness is presented, which is to reduce the credit risks and to increase the stability and profitability of financial organizations.


1980 ◽  
Vol 17 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Luis E. Vallejo

A new approach to the stability analysis of thawing slopes at shallow depths, taking into consideration their structure (this being a mixture of hard crumbs of soil and a fluid matrix), is presented. The new approach explains shallow mass movements such as skin flows and tongues of bimodal flows, which usually take place on very low slope inclinations independently of excess pore water pressures or increased water content in the active layer, which are necessary conditions in the methods available to date to explain these movements.


Sign in / Sign up

Export Citation Format

Share Document