electrode surfaces
Recently Published Documents


TOTAL DOCUMENTS

1186
(FIVE YEARS 139)

H-INDEX

77
(FIVE YEARS 8)

Author(s):  
Mark A. Buckingham ◽  
Florence Stoffel ◽  
Shuai Zhang ◽  
Yuqing Liu ◽  
Frank Marken ◽  
...  
Keyword(s):  

Soft Matter ◽  
2022 ◽  
Author(s):  
Courtenay Patterson ◽  
Bart Dietrich ◽  
Claire Wilson ◽  
Andrew R Mount ◽  
Dave Adams

The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction...


2021 ◽  
Author(s):  
Fengjie Zhao ◽  
Marko S Chavez ◽  
Kyle L Naughton ◽  
Christina M Cole ◽  
Jeffrey A Gralnick ◽  
...  

Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces and measurements demonstrated tunable biofilm conduction dependent on pattern size. Controlling biofilm geometry also enabled us, for the first time, to quantify the intrinsic conductivity of living S. oneidensis biofilms and experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.


Electrochem ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 677-688
Author(s):  
M’hamed Chahma

π-conducting materials such as chiral polythiophenes exhibit excellent electrochemical stability in doped and undoped states on electrode surfaces (chiral electrodes), which help tune their physical and electronic properties for a wide range of uses. To overcome the limitations of traditional surface immobilization methods, an alternative pathway for the detection of organic and bioorganic targets using chiral electrodes has been developed. Moreover, chiral electrodes have the ability to carry functionalities, which helps the immobilization and recognition of bioorganic molecules. In this review, we describe the use of polythiophenes for the design of chiral electrodes and their applications as electrochemical biosensors.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 466
Author(s):  
Ieva Šakinytė ◽  
Marius Butkevičius ◽  
Vidutė Gurevičienė ◽  
Jonita Stankevičiūtė ◽  
Rolandas Meškys ◽  
...  

As electrode nanomaterials, thermally reduced graphene oxide (TRGO) and modified gold nanoparticles (AuNPs) were used to design bioelectrocatalytic systems for reliable D-tagatose monitoring in a long-acting bioreactor where the valuable sweetener D-tagatose was enzymatically produced from a dairy by-product D-galactose. For this goal D-fructose dehydrogenase (FDH) from Gluconobacter industrius immobilized on these electrode nanomaterials by forming three amperometric biosensors: AuNPs coated with 4-mercaptobenzoic acid (AuNP/4-MBA/FDH) or AuNPs coated with 4-aminothiophenol (AuNP/PATP/FDH) monolayer, and a layer of TRGO on graphite (TRGO/FDH) were created. The immobilized FDH due to changes in conformation and spatial orientation onto proposed electrode surfaces catalyzes a direct D-tagatose oxidation reaction. The highest sensitivity for D-tagatose of 0.03 ± 0.002 μA mM–1cm–2 was achieved using TRGO/FDH. The TRGO/FDH was applied in a prototype bioreactor for the quantitative evaluation of bioconversion of D-galactose into D-tagatose by L-arabinose isomerase. The correlation coefficient between two independent analyses of the bioconversion mixture: spectrophotometric and by the biosensor was 0.9974. The investigation of selectivity showed that the biosensor was not active towards D-galactose as a substrate. Operational stability of the biosensor indicated that detection of D-tagatose could be performed during six hours without loss of sensitivity.


Author(s):  
Arkadiusz Dobrzycki ◽  
Władysław Opydo ◽  
Sebastian Zakrzewski

AbstractThe paper is devoted to the study of impact of additional dielectric coatings placed on the surface of the electrodes on the operation of a high-voltage insulation system with air as insulating medium. The study mainly focused on measurement of partial discharges (PDs) with the use of acoustic emission method. Tests were conducted in various levels of chamber pressure. Applicable parameters of recorded signals were analyzed with the use of applications developed in the environment of MATLAB software. The results of analyses clearly show that presence of additional coatings has impact on signal parameters and thus indirectly on PDs. The use of coatings reduces the duration of a single pulse (event) and increases its amplitude. Furthermore, the influence of degradation of the coating caused by individual discharges on the values of the analyzed parameters was analyzed. The study has shown, however, that this effect is negligible.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1373
Author(s):  
Elisabeth Lojou ◽  
Xinxin Xiao
Keyword(s):  

Enzymatic bioelectrocatalysis relies on immobilizing oxidoreductases on electrode surfaces, leading to different applications, such as biosensors [...]


2021 ◽  
Vol 9 (11) ◽  
pp. 2329
Author(s):  
Cheng Li ◽  
Clare E. Reimers ◽  
Yvan Alleau

Members in the family of Desulfobulbaceae may be influential in various anaerobic microbial communities, including those in anoxic aquatic sediments and water columns, and within wastewater treatment facilities and bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs). However, the diversity and roles of the Desulfobulbaceae in these communities have received little attention, and large portions of this family remain uncultured. Here we expand on findings from an earlier study (Li, Reimers, and Alleau, 2020) to more fully characterize Desulfobulbaceae that became prevalent in biofilms on oxidative electrodes of bioelectrochemical reactors. After incubations, DNA extraction, microbial community analyses, and microscopic examination, we found that a group of uncultured Desulfobulbaceae were greatly enriched on electrode surfaces. These Desulfobulbaceae appeared to form filaments with morphological features ascribed to cable bacteria, but the majority were taxonomically distinct from recognized cable bacteria genera. Thus, the present study provides new information about a group of Desulfobulbaceae that can exhibit filamentous morphologies and respire on the oxidative electrodes. While the phylogeny of cable bacteria is still being defined and updated, further enriching these members can contribute to the overall understanding of cable bacteria and may also lead to identification of successful isolation strategies.


Sign in / Sign up

Export Citation Format

Share Document