scholarly journals Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes

Author(s):  
Lu Li ◽  
Artem M. Rumyantsev ◽  
Samanvaya Srivastava ◽  
Siqi Meng ◽  
Juan de Pablo ◽  
...  

<div> <div> <div> <p>The role of polyelectrolyte-solvent interactions, among other non-Coulomb interactions, in dictating the thermodynamics and kinetics of polyelectrolyte complexation is prominent, yet sparingly studied. In this article, we present systematic comparisons of the binodal phase behavior of polyelectrolyte complexes (PECs) comprising polyelectrolytes with varying quality of backbone-solvent interactions. Experimental phase diagrams of polyelectrolyte complexes with either a peptide or an aliphatic backbone highlight the influence of backbone chemistry on the composition of complexes and their salt resistance. Corresponding theoretical phase diagrams, obtained from a framework combining the random phase approximation and Flory- Huggins approach, reveal a transition from closed phase boundaries with confined two-phase regions for PECs in good solvents to open phase boundaries, wherein two-phase systems are predicted to exist even at very high salt concentrations, for PECs in poor solvents. These predictions compare fittingly with experimental observations of low salt resistance (~1 M NaCl) of PECs comprising hydrophilic polyelectrolytes and persistence of complexes, stabilized by short-range hydrophobic interactions, even at very high salt concentrations (~6 M NaCl) for PECs comprising hydrophobic polyelectrolytes. </p> </div> </div> </div>

Author(s):  
Lu Li ◽  
Artem M. Rumyantsev ◽  
Samanvaya Srivastava ◽  
Siqi Meng ◽  
Juan de Pablo ◽  
...  

<div> <div> <div> <p>The role of polyelectrolyte-solvent interactions, among other non-Coulomb interactions, in dictating the thermodynamics and kinetics of polyelectrolyte complexation is prominent, yet sparingly studied. In this article, we present systematic comparisons of the binodal phase behavior of polyelectrolyte complexes (PECs) comprising polyelectrolytes with varying quality of backbone-solvent interactions. Experimental phase diagrams of polyelectrolyte complexes with either a peptide or an aliphatic backbone highlight the influence of backbone chemistry on the composition of complexes and their salt resistance. Corresponding theoretical phase diagrams, obtained from a framework combining the random phase approximation and Flory- Huggins approach, reveal a transition from closed phase boundaries with confined two-phase regions for PECs in good solvents to open phase boundaries, wherein two-phase systems are predicted to exist even at very high salt concentrations, for PECs in poor solvents. These predictions compare fittingly with experimental observations of low salt resistance (~1 M NaCl) of PECs comprising hydrophilic polyelectrolytes and persistence of complexes, stabilized by short-range hydrophobic interactions, even at very high salt concentrations (~6 M NaCl) for PECs comprising hydrophobic polyelectrolytes. </p> </div> </div> </div>


1984 ◽  
Vol 24 (01) ◽  
pp. 87-96 ◽  
Author(s):  
Rasmus Risnes

Abstract Modeling of reservoir processes like gas miscible flooding may require consideration of phase equilibrium between multiple liquid phases. Under certain conditions two hydrocarbon liquid phases may form; one may also want to account for mass transfer between the hydrocarbon and the aqueous phases. This paper describes a refined successive substitution (SS) method for calculating multiphase flash equilibrium. The phase behavior procedure proceeds in a stepwise manner, and additional phases are introduced by a special testing scheme based on phase fugacities. This is to avoid trivial solutions and to ensure continuity across phase boundaries. The method has been tested on various three- and four-phase systems, and examples of application show that the method performs well. Introduction Fluid phase behavior constitutes a very important aspect of more sophisticated oil recovery processes such as gas miscue flooding. In such processes mixtures of the reservoir fluids and the injected gas typically may approach critical conditions, and laboratory experiments have shown that the oil phase may in some cases split into two or more coexisting hydrocarbon liquid phases. In addition, interaction with the water phase may become important as the dissolution of gas components in water may affect the overall process performance significantly. The complexity of phase behavior during gas miscible flooding makes modeling and predictions a demanding task. Cubic Redlich-Kwong type EOS's have proved applicable for both gaseous and liquid phases. Thus, because of their simplicity, their reasonable accuracy, and their consistency near critical points, they have received much recent attention as a tool for describing compositional hydrocarbon reservoir phenomena. Various schemes for flash equilibrium calculations based on an EOS have been proposed. Broadly, they may be categorized as variants of the widely applied SS method or as second-order Newton-type methods. Most applications deal with two-phase problems, but extensions to multiphase problems have been reported. A basic solution scheme for multiphase cases was presented by Peng and Robinson. In addition, an extension of the minimum variable Newton technique was described by Fussell, and a combination of both first- and second-order methods was considered by Mehra and Mehra et al. One main problem with flash equilibrium calculations band on EOS's convergence toward trivial solutions and a proper delineation of phase boundaries. This is so for two-phase problems but even more so for multiphase problems, where phase boundaries may be very close to each other and good estimates of equilibrium K-values are more difficult to obtain. The work described here is part of a research project aimed at development of numerical modeling tools for EOR processes. The method for multiphase equilibrium calculations presented is an extension of the refined SS method previously developed for two-phase problems. The method has been incorporated into a fluid phase behavior package (COPEC). In developing the method, special emphasis has been put on computational efficiency and continuity across phase boundaries. Calculation Steps of Multiphase Flash The basis for our approach to the multiphase flash equilibrium problem is the SS method, which consists of the following steps.1. Assume equilibrium K-values.2. Calculate the phase distribution and compositions corresponding to the given K-values.3. Calculate component fugacities in each phase and check forequality.4. If equality is not achieved. correct the K-values on the basis of the fugacities and repeat from Step 2. We assume that fugacities are given from a cubic EOS (Redlich-Kwong, Peng-Robinson), but the problem of selecting suitable parameters, especially for lumped and/or heavy components, is considered beyond the scope of this paper. If the initial K-value estimates are sufficient, simultaneous handling of mi phases is probably the most efficient method. Frequently this is not the case, however, and the method then easily, becomes unstable and leads to trivial solutions. We have found it advantageous, therefore, to develop a more stepwise approach. Existence of the different phases is tested explicitly, and the sets of equilibrium constants are developed phase by phase before all phases are handled simultaneously. SPEJ P. 87^


2020 ◽  
Author(s):  
Lu Li ◽  
Samanvaya Srivastava ◽  
Siqi Meng ◽  
Jeffrey Ting ◽  
Matthew Tirrell

<div> <div> <div> <p> Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and materials industries. Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are one of the most commonly used pairings to form PECs. However, various aspects of the phase behavior of PAA-PAH complexes have not been sufficiently quantified. We present a comprehensive experimental study depicting the binodal phase boundaries for the PAA-PAH complexes prepared in acidic, neutral and basic conditions using thermogravimetric analysis, turbidimetry and optical microscopy. In neutral and basic conditions, phase behaviors of the complexes were largely similar to each other and followed general expectations of PEC phase behavior, except for unusually high salt resistance with stable complexes observed up to 4 M NaCl concentrations. In acidic conditions, a remarkably different phase behavior of the PAA-PAH complexes was observed. The polymer content in the complex phase increased initially followed by an expected decrease as salt was added to the complexes. This behavior may result from a combination of associative phase separation of PAA and PAH chains, influenced by electrostatic interactions, and segregative phase separation which can be ascribed to the influence of a combination of the hydrophobic interactions of the aliphatic polymer backbone and the interpolymer hydrogen bonding of un- ionized acrylic monomer units. Our systematic investigations detailing these discrepancies in the PAA-PAH phase behavior are expected to clarify the inconsistencies among the reports in the literature and inform the materials design strategies for practical use of the PAA-PAH complexes and multilayer assemblies. </p> </div> </div> </div>


1982 ◽  
Vol 22 (01) ◽  
pp. 28-36 ◽  
Author(s):  
M. Bourrel ◽  
C. Chambu ◽  
R.S. Schechter ◽  
W.H. Wade

Abstract Surfactant/oil/water phase diagrams have become the most important screening tool used to select microemulsion systems for enhanced oil recovery. The number of phases coexisting at a given salinity, the extent of the single-phase region, and the position of the phase boundaries all have relevance with respect to oil displacement efficiency. It is shown that the phase diagrams can be made to take on different configurations depending on the alcohol cosurfactant, the salinity, the impurities present in the surfactant, and the dispersity of the surfactant mixture. Besides the importance of the phase boundary shape, this study provides further insight into factors determining the height of the binodal surface on the pseudoternary phase diagram. Results show the effect of salinity as well as the surfactant, alcohol, and hydrocarbon types on the height of the binodal surface. It is shown that salinity is the main factor; other parameters have little or no influence once a surfactant has been selected. Finally the microemulsion viscosity is shown to be related to the proximity of the formulation to phase boundaries. Extensive data for one system are presented. Introduction It is now recognized that formulating surfactant/oil/brine systems that exhibit desirable phase behavior is an important step in optimizing performance of microemulsion systems for enhanced oil recovery. Oil is displaced by a combination of mechanisms-miscible displacement, swelling of the oil phase, and low tension displacement all of which are related to the topology of the phase boundaries in composition space. To predict the outcome of a particular project, a representation of the phase boundaries and their evolution when diluted with oil or brines having various proportions of divalent ions is required. For example, successful application of the salinity gradient concept demands phase relationships specially structured to accommodate the variations in salinity experienced by the surfactant slug during the course of the flood. Recent publications have dealt with the optimal salinity as a function of total amphiphile concentration (surfactant plus cosurfactant), and reported trends that are quite different from those found if the cosurfactant (alcohol) concentration is held constant. One purpose of this paper is to demonstrate that contorted phase boundaries found by Glover et al are caused by the variation of alcohol concentration when the concentration of total amphiphile is varied and because the direction that the phase boundaries twist or rotate is controlled by the nature of the alcohol. Another important factor is the extent of the single-phase region. More precisely, the height of the demixing curve in the pseudoternary representation should be minimized. This would permit, in principle, the amount of surfactant and cosurfactant in the micellar slug to be minimized. A correlation permitting the determination of the oil, salinity, alcohol, and surfactant at which the height of the demixing curve is minimized has been reported, but few data giving the value of the minimum height have been presented. This height is an important feature of the phase boundary topology and extensive measurements are reported here. The microemulsion viscosity must be high enough to help maintain mobility control. It is sometimes difficult to achieve the required levels of viscosity. Studies of microemulsion viscosity have been reported. We provide further data here and have related the microemulsion viscosities to phase behavior. Materials and Experimental Techniques The phase diagrams have been established by two techniques: a titration procedure and a grid-point technique. SPEJ P. 28^


Author(s):  
Lu Li ◽  
Samanvaya Srivastava ◽  
Siqi Meng ◽  
Jeffrey Ting ◽  
Matthew Tirrell

<div> <div> <div> <p> Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and materials industries. Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are one of the most commonly used pairings to form PECs. However, various aspects of the phase behavior of PAA-PAH complexes have not been sufficiently quantified. We present a comprehensive experimental study depicting the binodal phase boundaries for the PAA-PAH complexes prepared in acidic, neutral and basic conditions using thermogravimetric analysis, turbidimetry and optical microscopy. In neutral and basic conditions, phase behaviors of the complexes were largely similar to each other and followed general expectations of PEC phase behavior, except for unusually high salt resistance with stable complexes observed up to 4 M NaCl concentrations. In acidic conditions, a remarkably different phase behavior of the PAA-PAH complexes was observed. The polymer content in the complex phase increased initially followed by an expected decrease as salt was added to the complexes. This behavior may result from a combination of associative phase separation of PAA and PAH chains, influenced by electrostatic interactions, and segregative phase separation which can be ascribed to the influence of a combination of the hydrophobic interactions of the aliphatic polymer backbone and the interpolymer hydrogen bonding of un- ionized acrylic monomer units. Our systematic investigations detailing these discrepancies in the PAA-PAH phase behavior are expected to clarify the inconsistencies among the reports in the literature and inform the materials design strategies for practical use of the PAA-PAH complexes and multilayer assemblies. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Lu Li ◽  
Samanvaya Srivastava ◽  
Siqi Meng ◽  
Jeffrey Ting ◽  
Matthew Tirrell

<div> <div> <div> <p> Polyelectrolyte complexes (PECs) offer enormous material tunability and desirable functionalities, and consequently have found broad utility in biomedical and materials industries. Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) are one of the most commonly used pairings to form PECs. However, various aspects of the phase behavior of PAA-PAH complexes have not been sufficiently quantified. We present a comprehensive experimental study depicting the binodal phase boundaries for the PAA-PAH complexes prepared in acidic, neutral and basic conditions using thermogravimetric analysis, turbidimetry and optical microscopy. In neutral and basic conditions, phase behaviors of the complexes were largely similar to each other and followed general expectations of PEC phase behavior, except for unusually high salt resistance with stable complexes observed up to 4 M NaCl concentrations. In acidic conditions, a remarkably different phase behavior of the PAA-PAH complexes was observed. The polymer content in the complex phase increased initially followed by an expected decrease as salt was added to the complexes. This behavior may result from a combination of associative phase separation of PAA and PAH chains, influenced by electrostatic interactions, and segregative phase separation which can be ascribed to the influence of a combination of the hydrophobic interactions of the aliphatic polymer backbone and the interpolymer hydrogen bonding of un- ionized acrylic monomer units. Our systematic investigations detailing these discrepancies in the PAA-PAH phase behavior are expected to clarify the inconsistencies among the reports in the literature and inform the materials design strategies for practical use of the PAA-PAH complexes and multilayer assemblies. </p> </div> </div> </div>


Author(s):  
Md. Hamidul Kabir ◽  
Ravshan Makhkamov ◽  
Shaila Kabir

The solution properties and phase behavior of ammonium hexylene octyl succinate (HOS) was investigated in water and water-oil system. The critical micelle concentration (CMC) of HOS is lower than that of anionic surfactants having same carbon number in the lipophilic part. The phase diagrams of a water/ HOS system and water/ HOS/ C10EO8/ dodecane system were also constructed. Above critical micelle concentration, the surfactant forms a normal micellar solution (Wm) at a low surfactant concentration whereas a lamellar liquid crystalline phase (La) dominates over a wide region through the formation of a two-phase region (La+W) in the binary system. The lamellar phase is arranged in the form of a biocompatible vesicle which is very significant for the drug delivery system. The surfactant tends to be hydrophilic when it is mixed with C10EO8 and a middle-phase microemulsion (D) is appeared in the water-surfactant-dodecane system where both the water and oil soluble drug ingredient can be incorporated in the form of a dispersion. Hence, mixing can tune the hydrophile-lipophile properties of the surfactant. Key words: Ammonium hexylene octyl succinate, mixed surfactant, lamellar liquid crystal, middle-phase microemulsion. Dhaka Univ. J. Pharm. Sci. Vol.3(1-2) 2004 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


Author(s):  
Xingliang Li ◽  
Minji Li ◽  
Beibei Zhou ◽  
Yuzhang Yang ◽  
Jia Zhou ◽  
...  

1995 ◽  
Vol 28 (10) ◽  
pp. 3597-3603 ◽  
Author(s):  
Maarten Svensson ◽  
Per Linse ◽  
Folke Tjerneld

Sign in / Sign up

Export Citation Format

Share Document