The Topology of Phase Boundaries for Oil/Brine/Surfactant Systems and Its Relationship to Oil Recovery

1982 ◽  
Vol 22 (01) ◽  
pp. 28-36 ◽  
Author(s):  
M. Bourrel ◽  
C. Chambu ◽  
R.S. Schechter ◽  
W.H. Wade

Abstract Surfactant/oil/water phase diagrams have become the most important screening tool used to select microemulsion systems for enhanced oil recovery. The number of phases coexisting at a given salinity, the extent of the single-phase region, and the position of the phase boundaries all have relevance with respect to oil displacement efficiency. It is shown that the phase diagrams can be made to take on different configurations depending on the alcohol cosurfactant, the salinity, the impurities present in the surfactant, and the dispersity of the surfactant mixture. Besides the importance of the phase boundary shape, this study provides further insight into factors determining the height of the binodal surface on the pseudoternary phase diagram. Results show the effect of salinity as well as the surfactant, alcohol, and hydrocarbon types on the height of the binodal surface. It is shown that salinity is the main factor; other parameters have little or no influence once a surfactant has been selected. Finally the microemulsion viscosity is shown to be related to the proximity of the formulation to phase boundaries. Extensive data for one system are presented. Introduction It is now recognized that formulating surfactant/oil/brine systems that exhibit desirable phase behavior is an important step in optimizing performance of microemulsion systems for enhanced oil recovery. Oil is displaced by a combination of mechanisms-miscible displacement, swelling of the oil phase, and low tension displacement all of which are related to the topology of the phase boundaries in composition space. To predict the outcome of a particular project, a representation of the phase boundaries and their evolution when diluted with oil or brines having various proportions of divalent ions is required. For example, successful application of the salinity gradient concept demands phase relationships specially structured to accommodate the variations in salinity experienced by the surfactant slug during the course of the flood. Recent publications have dealt with the optimal salinity as a function of total amphiphile concentration (surfactant plus cosurfactant), and reported trends that are quite different from those found if the cosurfactant (alcohol) concentration is held constant. One purpose of this paper is to demonstrate that contorted phase boundaries found by Glover et al are caused by the variation of alcohol concentration when the concentration of total amphiphile is varied and because the direction that the phase boundaries twist or rotate is controlled by the nature of the alcohol. Another important factor is the extent of the single-phase region. More precisely, the height of the demixing curve in the pseudoternary representation should be minimized. This would permit, in principle, the amount of surfactant and cosurfactant in the micellar slug to be minimized. A correlation permitting the determination of the oil, salinity, alcohol, and surfactant at which the height of the demixing curve is minimized has been reported, but few data giving the value of the minimum height have been presented. This height is an important feature of the phase boundary topology and extensive measurements are reported here. The microemulsion viscosity must be high enough to help maintain mobility control. It is sometimes difficult to achieve the required levels of viscosity. Studies of microemulsion viscosity have been reported. We provide further data here and have related the microemulsion viscosities to phase behavior. Materials and Experimental Techniques The phase diagrams have been established by two techniques: a titration procedure and a grid-point technique. SPEJ P. 28^

1981 ◽  
Vol 21 (06) ◽  
pp. 763-770 ◽  
Author(s):  
Kishor D. Shah ◽  
Don W. Green ◽  
Michael J. Michnick ◽  
G. Paul Willhite ◽  
Ronald E. Terry

Abstract Phase behavior of microemulsions composed of TRS 10-80, brine (10.6 mg/g NaCl), isopropyl alcohol, and mixtures of pure hydrocarbons was studied to determine the location of phase boundaries of the single-phase microemulsion region. Studies were conducted on pseudoternary phase diagrams where the pseudocomponents were isopropanol, brine, and a constant ratio of surfactant to hydrocarbon (S/H). Phase boundaries were determined be the titration method developed by Bowcott and Schulman, which was extended to systems of interest for oil recovery by Dominguez et al.The titration method involves the addition of brine to a single-phase microemulsion until phase separation occurs. Then the system is titrated to transparency by addition of isopropanol. Dominguez et al. demonstrated the applicability of the titration method for systems containing pure alkanes. They found upper and lower phase boundaries (high and low alcohol concentrations) for the microemulsion regions on S/H pseudoternary diagrams that were represented by linear relationships between the volume of alcohol and the volume of brine required to attain a single-phase microemulsion. This region, termed Region 4, bounded by linear phase boundaries, extends over a wide range of brine concentrations including regions of interest to enhanced oil-recovery processes. The research reported in this paper extends the work of Dominguez et al. to mixtures of pure hydrocarbons. The locations of the lower phase boundaries for Region 4 were determined for four types of mixtures prepared with pure hydrocarbons ranging from C6 to C18.In all phase behavior experiments, the lower phase boundary of Region 4 was a straight line when volume of alcohol was plotted against volume of brine. Furthermore, the slope of this phase boundary was found to be a linear function of alkane carbon number (ACN) for pure hydrocarbons and equivalent alkane carbon number (EACN) for mixtures of pure hydrocarbons.The correlation of a property of the phase diagram (the slope of the lower phase boundary) with EACN suggests a new approach to characterization of hydrocarbon/surfactant systems. In our experience, the EACN determined from phase behavior studies is more reproducible than the EACN determined from methods involving measurements of interfacial tensions. This method has potential for characterization of surfactant/hydrocarbon systems for complex mixtures of hydrocarbons, including crude oils. Introduction The design of a surfactant system for an enhanced oil-recovery application typically requires much effort, expense, and time. The surfactant system, usually consisting of a petroleum sulfonate and an alcohol dissolved in a brine solution, must be tailormade for a given crude oil/reservoir brine system where it will be applied. The process in finding the optimal system involves varying the components in the surfactant system in compatibility tests, phase behavior studies, physical property measurements, and displacement tests in both Berea and actual reservoir rock.One of the most important considerations in this screening procedure is matching the sulfonate to the crude oil of interest. This can be difficult since both the sulfonate and the crude oil are complex mixtures of pure components. It would be advantageous if each could be characterized by some physical property. SPEJ P. 763^


1981 ◽  
Vol 21 (05) ◽  
pp. 581-592 ◽  
Author(s):  
Creed E. Blevins ◽  
G. Paul Willhite ◽  
Michael J. Michnick

Abstract The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system.The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H + M, and M + W regions meet. On this line, the microemulsion (M*) is saturated with hydrocarbon, brine, and alcohol for a particular sulfonate content. A H + M region exists above the three-phase region, and an M + W region exists below it.Relationships were found between the alcohol concentration of the middle phase and the sulfonate/alcohol and sulfonate/hydrocarbon ratios in the middle phase. These correlations define the curve that represents the locus of saturated microemulsions in the quaternary phase diagram. Alcohol contents of excess oil and brine phases also were correlated with alcohol in the middle phase.Pseudoternary diagrams for sulfonates are presented to provide insight into the evolution of the three-phase region with salinity. Surfactants include Mahogany AA, Phillips 51918, Suntech V, and Stepan Petrostep(TM) 500. Differences between phase diagrams follow trends inferred from comparisons of equivalent weights, mono-/disulfonate content, optimal salinity, and EPACNUS values. Introduction The displacement of oil from a porous rock by microemulsions is a complex process. As the microemulsion flows through the rock, it mixes with and/or solubilizes oil and water. The composition of the microemulsion is altered by adsorption of sulfonate, leading to expulsion of water and/or oil. Multiphase regions are encountered where phases may flow at different velocities depending on the fluid/rock interactions. Knowledge of phase behavior of microemulsion systems is required to understand the displacement mechanisms, to model process performance, and to select suitable compositions for injection.Microemulsions used in oil recovery processes consist of five components: oil, water, salt, surfactant (usually a petroleum sulfonate and a cosurfactant (usually an alcohol). Brine frequently is considered to be a pseudocomponent. When this assumption is valid, a microemulsion may be studied as a four-component system.Windsor developed a qualitative explanation and classification scheme for microemulsion phase behavior. Healy and Reed showed that Windsor's concepts were applicable to microemulsions used in oil recovery processes. Healy et al. introduced the concept of optimal salinity to define a particular characteristic of surfactant system. The optimal salinity for phase behavior was defined as the salinity where the middle phase of a three-phase system has equal solubility of oil and brine. They also found that optimal salinity determined in this manner was close to the salinity where the interfacial tension between the upper and middle phases was equal to the interfacial tension between the middle and lower phases.Salager et al. developed a correlation of optimal salinity data for a particular surfactant. SPEJ P. 581^


1976 ◽  
Vol 54 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. M. Reyes ◽  
S. L. Segel ◽  
M. Sayer

The general form of the phase diagrams for impurity-doped VO2 is considered and shown to include mixed phase boundary regions. Phase diagrams for Cr and Al-doped VO2 are established on the basis of the temperature dependence of the 51V nuclear magnetic resonance (NMR) signal. In Cr-doped VO2, the (M2) phase is shown to exist over a smaller temperature–concentration range than reported previously and in Al-doped VO2, two intermediate single phases (M2) and (M3) are found. The (T) phase which has been previously suggested to be a definite phase having triclinic symmetry is shown to be a mixed phase region in which the contributions from the components change with temperature. Changes in NMR signal intensity at the phase boundaries show that half the V sites have paired spins in both the(M2) and (M3) phases.


SPE Journal ◽  
2018 ◽  
Vol 23 (02) ◽  
pp. 550-566 ◽  
Author(s):  
Soumyadeep Ghosh ◽  
Russell T. Johns

Summary Reservoir crudes often contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali/surfactant/polymer (ASP) flooding. The two main advantages of using alkali in enhanced oil recovery (EOR) are to lower cost by injecting a lesser amount of expensive synthetic surfactant and to reduce adsorption of the surfactant on the mineral surfaces. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. For a robust chemical-flood design, a comprehensive understanding of the microemulsion phase behavior in such processes is critical. Chemical-flooding simulators currently use Hand's method to fit a limited amount of measured data, but that approach likely does not adequately predict the phase behavior outside the range of the measured data. In this paper, we present a novel and practical alternative. In this paper, we extend a dimensionless equation of state (EOS) (Ghosh and Johns 2016b) to model ASP phase behavior for potential use in reservoir simulators. We use an empirical equation to calculate the acid-distribution coefficient from the molecular structure of the soap. Key phase-behavior parameters such as optimum salinities and optimum solubilization ratios are calculated from soap-mole-fraction-weighted equations. The model is tuned to data from phase-behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The predictions of the model are in good agreement with measured data.


Sign in / Sign up

Export Citation Format

Share Document