scholarly journals Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MSI and Lipid C=C Position-Resolved MS2I

Author(s):  
Fabian Wäldchen ◽  
Franziska Mohr ◽  
Andreas H. Wagner ◽  
Sven Heiles

Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods and resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link lipid structure to lipid function. Whereas some structural elements of lipids are readily derived from high-resolution mass spectrometry (MS) and tandem-MS (MSn), the localization of C=C double bonds (DBs) requires specialized fragmentation and/or functionalization methods. In this work, we identify a multifunctional matrix-assisted laser desorption/ionization (MALDI) matrix for spatially-resolved lipidomics investigations that reacts with lipids in Paternò-Büchi (PB) reactions during laser irradiation facilitating DB position assignment and allows dual polarity high-resolution MALDI-MSI and MALDI MS2I studies. By screening twelve compounds for improved ionization efficiency in positive/negative ion mode and PB functionalization yield compared to the previously introduced reactive MALDI matrix benzophenone, benzoylpyridine (BzPy) is identified as the best candidate. The multifunctional character of the new matrix enables DB localization of authentic standards belonging to twelve lipid classes and helps to assign 506/365 lipid features in positive/negative ion mode from mouse cerebellum tissue. The analytical capabilities of BzBy as a multifunctional MALDI-MSI matrix are demonstrated by imaging endogenous and PB-functionalized lipids in mouse kidney sections with 7 µm lateral resolution in both ion modes. Tracking diagnostic lipid DB position fragment ions in mouse pancreas tissue with down to 10 µm pixel size allows to identify islets of Langerhans associated lipid isomer upregulation or depletion. <br>

2020 ◽  
Author(s):  
Fabian Wäldchen ◽  
Franziska Mohr ◽  
Andreas H. Wagner ◽  
Sven Heiles

Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods and resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link lipid structure to lipid function. Whereas some structural elements of lipids are readily derived from high-resolution mass spectrometry (MS) and tandem-MS (MSn), the localization of C=C double bonds (DBs) requires specialized fragmentation and/or functionalization methods. In this work, we identify a multifunctional matrix-assisted laser desorption/ionization (MALDI) matrix for spatially-resolved lipidomics investigations that reacts with lipids in Paternò-Büchi (PB) reactions during laser irradiation facilitating DB position assignment and allows dual polarity high-resolution MALDI-MSI and MALDI MS2I studies. By screening twelve compounds for improved ionization efficiency in positive/negative ion mode and PB functionalization yield compared to the previously introduced reactive MALDI matrix benzophenone, benzoylpyridine (BzPy) is identified as the best candidate. The multifunctional character of the new matrix enables DB localization of authentic standards belonging to twelve lipid classes and helps to assign 506/365 lipid features in positive/negative ion mode from mouse cerebellum tissue. The analytical capabilities of BzBy as a multifunctional MALDI-MSI matrix are demonstrated by imaging endogenous and PB-functionalized lipids in mouse kidney sections with 7 µm lateral resolution in both ion modes. Tracking diagnostic lipid DB position fragment ions in mouse pancreas tissue with down to 10 µm pixel size allows to identify islets of Langerhans associated lipid isomer upregulation or depletion. <br>


2018 ◽  
Vol 90 (15) ◽  
pp. 8742-8749 ◽  
Author(s):  
Lulu H. Tucker ◽  
Antonio Conde-González ◽  
Diego Cobice ◽  
Gregory R. Hamm ◽  
Richard J. A. Goodwin ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Wanjin Sun ◽  
Junjie Zhang ◽  
Conghui Zhou ◽  
Bin Yan ◽  
Quan Cai ◽  
...  

Objective. To compare the differences in the serum principal components in ulcerative colitis- (UC-) induced rats, treated with compound Sophora decoction, matrine, oxymatrine monomer mixture, and indirubin monomer, and to provide a modern scientific basis for elucidating the clinical efficacy of compound Sophora decoction for the treatment of UC. Methods. The serum samples of rats from each group were obtained after drug administration, and the serum principal components of each group were analyzed by high-resolution mass spectrometry. Agilent Eclipse XDB C18 chromatographic column (100 mm × 2.1 mm, 3.5 m) was used for separation. The mobile phase was water (A) and methanol (B) (0.1% formic acid) gradient elution, 0–3 min (B: 20%–40%), 3–10 min (B: 40%–54%), 10–25 min (B: 54%), 25–35 min (B: 54%–70%), 35–45 min (B: 70%–80%), 45–50 min (B: 80%), 50–60 min (B: 80%–100%), 70–72 min (B: 100%–20%), and 72–77 min (B: 20%); flow rate, 300 μL/min; column temperature, 40°C; and injection volume, 10 μL. ESI source was selected and scanned in the positive and negative ion modes. The scanning range was 70–1500 m/z; ion-source gas 1 (GS1): 55 psi; ion-source gas 2 (GS2): 60 psi; CUR: 30 psi; ion-source temperature (TEM): 550°C; ion-source voltage (ISVF) : 5500 V/−4500 V; decluster voltage (DP): 100 V; collision energy (CE): 35 V/−35 V; collision energy gain (CES) : 15 V/−15 V; and data acquisition mode: IDA. After the data from each group were imported into MarkView 1.3, the molecular weights and retention times of different substances were obtained and qualitatively analyzed by ChemSpider and PeakView 2.0. Results. In the negative ion mode, 26 differential compounds were identified in the compound Sophora decoction group (FFKST) compared to the model group (M), and 18 differential compounds were identified in the matrine and oxymatrine group (KST) compared to the model group (M). In the positive ion mode, 11 and 7 differential compounds were identified in the compound Sophora decoction group (FFKST) and the matrine and oxymatrine group (KST) compared to the model group (M), respectively. The responses of all compounds in each group were compared with each other. As the different principal component substances in the indirubin group (DYH) displayed little correlation with other groups, the different components in this group were not researched thoroughly. Conclusion. By comparing the differences in the serum principal components from each administration group, we found that the FFKST group exhibited enhanced synthesis of the serum principal components; however, the compound doses of matrine and oxymatrine monomers did not exhibit the same changes in the serum principal components of UC-induced rats. Finally, the traditional Chinese medicine compound is more advantageous than monomers.


Sign in / Sign up

Export Citation Format

Share Document