scholarly journals Ultra-Low Molecular Weight Photoswitchable Hydrogelators

Author(s):  
Fayaz Larik ◽  
Lucy Fillbrook ◽  
Sandra Nurttila ◽  
Adam D Martin ◽  
Rhiannon P. Kuchel ◽  
...  

Photoswitchable arylazopyrozoles 2 and 3 form hydrogels at a concentration of 1.2% (w/v). With a molecular weight of 258.11 g/mol, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Single-crystal X-ray structures show anisotropic aggregation of 2 and 3 is driven by in-plane hydrogen bonding interactions and 𝝅 - 𝝅 stacking. Photoswitching of 2 and 3 from the E- to the Z-form by 365 nm light results in a macrocopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. Cryogenic transmission electron macroscopy suggests that the 29±7 nm wide sheets in the E-2 gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-2 solution state. In the case of 2, photoswitching is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a Rhodamine B dye encapsulated in gels formed from 2 and 3 can be accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.

2020 ◽  
Author(s):  
Fayaz Larik ◽  
Lucy Fillbrook ◽  
Sandra Nurttila ◽  
Adam D Martin ◽  
Rhiannon P. Kuchel ◽  
...  

Photoswitchable arylazopyrozoles 2 and 3 form hydrogels at a concentration of 1.2% (w/v). With a molecular weight of 258.11 g/mol, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Single-crystal X-ray structures show anisotropic aggregation of 2 and 3 is driven by in-plane hydrogen bonding interactions and 𝝅 - 𝝅 stacking. Photoswitching of 2 and 3 from the E- to the Z-form by 365 nm light results in a macrocopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. Cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-2 gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-2 solution state. In the case of 2, photoswitching is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a Rhodamine B dye encapsulated in gels formed from 2 and 3 can be accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.


2020 ◽  
Author(s):  
Fayaz Larik ◽  
Lucy Fillbrook ◽  
Sandra Nurttila ◽  
Adam D Martin ◽  
Rhiannon P. Kuchel ◽  
...  

Photoswitchable arylazopyrozoles 2 and 3 form hydrogels at a concentration of 1.2% (w/v). With a molecular weight of 258.11 g/mol, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Single-crystal X-ray structures show anisotropic aggregation of 2 and 3 is driven by in-plane hydrogen bonding interactions and 𝝅 - 𝝅 stacking. Photoswitching of 2 and 3 from the E- to the Z-form by 365 nm light results in a macrocopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. Cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-2 gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-2 solution state. In the case of 2, photoswitching is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a Rhodamine B dye encapsulated in gels formed from 2 and 3 can be accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.


2020 ◽  
Author(s):  
Fayaz Larik ◽  
Lucy Fillbrook ◽  
Sandra Nurttila ◽  
Adam D Martin ◽  
Rhiannon P. Kuchel ◽  
...  

Photoswitchable arylazopyrozoles 2 and 3 form hydrogels at a concentration of 1.2% (w/v). With a molecular weight of 258.11 g/mol, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Single-crystal X-ray structures show anisotropic aggregation of 2 and 3 is driven by in-plane hydrogen bonding interactions and 𝝅 - 𝝅 stacking. Photoswitching of 2 and 3 from the E- to the Z-form by 365 nm light results in a macrocopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. Cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-2 gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-2 solution state. In the case of 2, photoswitching is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a Rhodamine B dye encapsulated in gels formed from 2 and 3 can be accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.


2020 ◽  
Author(s):  
Fayaz Larik ◽  
Lucy Fillbrook ◽  
Sandra Nurttila ◽  
Adam D Martin ◽  
Rhiannon P. Kuchel ◽  
...  

Photoswitchable arylazopyrozoles 2 and 3 form hydrogels at a concentration of 1.2% (w/v). With a molecular weight of 258.11 g/mol, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Single-crystal X-ray structures show anisotropic aggregation of 2 and 3 is driven by in-plane hydrogen bonding interactions and 𝝅 - 𝝅 stacking. Photoswitching of 2 and 3 from the E- to the Z-form by 365 nm light results in a macrocopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. Cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-2 gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-2 solution state. In the case of 2, photoswitching is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a Rhodamine B dye encapsulated in gels formed from 2 and 3 can be accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.


2013 ◽  
Vol 834-836 ◽  
pp. 515-518
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Ting Ting Huang ◽  
Yang Xu ◽  
Lin Tong Wang ◽  
...  

A novel praseodymium complex C5H13O11Pr has been synthesized from hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Pr1 atom is nine coordinated by nine O atoms. The crystal packing is stabilized by O-H...O hydrogen bonding interactions.


1989 ◽  
Vol 44 (8) ◽  
pp. 942-945 ◽  
Author(s):  
Wolfgang Schnick

Phosphorothionic triamide SP(NH2)3 is obtained by slow addition of SPCl3 dissolved in dry CH2Cl2 to a satured solution of NH3 in CH2Cl2 at —50°C. Ammonium chloride is removed from the resulting precipitate by treatment with HNEt2 followed by extraction with CH2Cl2. Coarse crystalline SP(NH2)3 is obtained after recrystallization from dry methanol. The crystal structure of SP(NH2)3 has been determined by single crystal X-ray methods (Pbca; a = 922.3(1), b = 953.8(1), c = 1058.4(2) pm, Z = 8). In the crystals the molecules show non-crystallographic point symmetry C8. The P—S bond (195.4(1) pm) is slightly longer than in SPCl3. From P—N bond lengths of about 166 pm a significant electrostatic strengthening of the P—N single bonds is assumed. Weak intermolecular hydrogen bonding interactions (N —H · · · N ≥ 329.5 pm; N — H · · · S ≥ 348.3 pm) are observed.Investigation of thermal properties shows a melting temperature of 115°C for SP(NH2)3. According to combined DTA/TG and MS investigations above this temperature the compound decomposes by evolution of H2S and NH3 to yield amorphous phosphorus(V)nitride.


2012 ◽  
Vol 554-556 ◽  
pp. 792-795
Author(s):  
Hai Xing Liu ◽  
Jing Wang ◽  
Fang Fang Jian ◽  
Hui Juan Yue ◽  
Guang Zeng ◽  
...  

A new Eu complex [Eu (C3O9H6)] ·2(H2O) has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Eu atom is coordinated by eight O atoms. The molecular is antisymmetric structure by the C3-C3 axis. It is striking that the structure of the complex exhibits extensive O-H…O hydrogen-bonding interactions.


2013 ◽  
Vol 785-786 ◽  
pp. 424-427
Author(s):  
Hai Xing Liu ◽  
Qing Hua Zhang ◽  
Zhang Xue Yu ◽  
Quan Hua Fan ◽  
Ting Ting Huang ◽  
...  

The Y complex C4H10O10Y has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Y atom is coordinated by nine O atoms. The molecular structure stabilized by the O-H…O hydrogen-bonding interactions.


CrystEngComm ◽  
2015 ◽  
Vol 17 (42) ◽  
pp. 8047-8057 ◽  
Author(s):  
Emily R. Draper ◽  
Kyle L. Morris ◽  
Marc A. Little ◽  
Jaclyn Raeburn ◽  
Catherine Colquhoun ◽  
...  

A number of Fmoc amino acids can be effective low molecular weight hydrogelators; we compare single crystal structures to fibre X-ray diffraction data.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Aarón Pérez-Benítez ◽  
Sylvain Bernès

The crystal structure of ammonium metavanadate, NH4VO3, a compound widely used as a starting material for the synthesis of vanadium and polyoxidovanadate compounds, had been determined twice using single-crystal X-ray data [Syneček & Hanic (1954). Czech. J. Phys. 4, 120–129 (Weissenberg data); Hawthorne & Calvo (1977). J. Solid State Chem. 22, 157–170 (four-circle diffractometer data)]. Its structure is now redetermined at higher resolution using Ag Kα radiation, and the result is compared with the former refinements. Structural data for the polymeric [VO3]∞ chain remain unchanged, while more accurate parameters are obtained for the ammonium cation, improving the description of hydrogen-bonding interactions in the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document