scholarly journals Intrinsically Polar Piezoelectric Self-Assembled Oligopeptide Monolayers

Author(s):  
Christopher Petroff ◽  
Giuseppe Cassone ◽  
Jiří Šponer ◽  
Geoffrey Hutchison

<div><div><div><p>Flexible, bio-compatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33) of up to 9.8 pC N−1, they exhibit immense piezoelectric voltage constants (g33) up to 2 V m N−1. Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.</p></div></div></div>

2021 ◽  
Author(s):  
Christopher Petroff ◽  
Giuseppe Cassone ◽  
Jiří Šponer ◽  
Geoffrey Hutchison

<div><div><div><p>Flexible, bio-compatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33) of up to 9.8 pC N−1, they exhibit immense piezoelectric voltage constants (g33) up to 2 V m N−1. Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.</p></div></div></div>


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5137
Author(s):  
Michal Cichomski ◽  
Milena Prowizor ◽  
Dorota Anna Kowalczyk ◽  
Andrzej Sikora ◽  
Damian Batory ◽  
...  

This study compared the tribological properties in nano- and millinewton load ranges of Ti‑6Al-4V surfaces that were modified using self-assembled monolayers (SAMs) of carboxylic and phosphonic acids. The effectiveness of the creation of SAMs with the use of the liquid phase deposition (LPD) technique was monitored by the contact angle measurement, the surface free energy (SFE) calculation, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) measurements. The obtained results indicated that more stable and well-ordered layers, which were characterized by the lowest values of the coefficient of friction, adhesion, and wear rate, were obtained using phosphonic acid as a surface modifier. Based on the obtained results, it was found that the Ti-6Al-4V alloy modified by phosphonic acid would be the most advantageous for practical applications, especially in micro- and nanoelectromechanical systems (MEMS/NEMS).


1998 ◽  
Vol 95 (6) ◽  
pp. 1339-1342 ◽  
Author(s):  
R. Michalitsch ◽  
A. El Kassmi ◽  
P. Lang ◽  
A. Yassar ◽  
F. Garnier

2003 ◽  
Vol 104 ◽  
pp. 459-462 ◽  
Author(s):  
R. Klauser ◽  
M. Zharnikov ◽  
I.-H. Hong ◽  
S.-C. Wang ◽  
A. Gölzhäuser ◽  
...  

2009 ◽  
Vol 25 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Guo-Qiang TAN ◽  
Hai-Yang BO ◽  
Hong-Yan MIAO ◽  
Ao XIA ◽  
Zhong-Liang HE

Sign in / Sign up

Export Citation Format

Share Document